Matrix Factorization for Automatic Chemical Mapping from Electron Microscopic Spectral Imaging Datasets

Access this Article

Author(s)

    • Shiga Motoki
    • Department of Electrical, Electronic and Computer Engineering, Gifu University
    • Muto Shunsuke
    • Advanced Measurement Technology Center, Institute of Materials and Systems for Sustainability, Nagoya University
    • Tatsumi Kazuyoshi
    • Advanced Measurement Technology Center, Institute of Materials and Systems for Sustainability, Nagoya University
    • Tsuda Koji
    • Graduate School of Frontier Sciences, University of Tokyo|Center for Materials Research by Information Integration, National Institute for Materials Science|Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology

Abstract

<p>Advances in scanning transmission electron microscopy (STEM) techniques have enabled us to automatically obtain electron energy-loss (EELS)/energy-dispersive X-ray (EDX) spectral datasets from a specified region of interest (ROI) at an arbitrary step width, called spectral imaging (SI). Instead of manually identifying the potential constituent chemical components from the ROI, it is more effective and efficient to use a statistical approach for the automatic identification of the underlying chemical components and their spectra. This problem of automatic decomposition of chemical components can be formalized as a matrix factorization, which is a common problem setting in statistical machine learning. This paper first reviews several matrix factorization methods and then introduces our extension of a non-negative matrix factorization (NMF). The present NMF solves two problems: i) resolving overlapped spectral profiles, avoiding unnatural crosstalk, and ii) optimizing the number of chemical components. These effectiveness and comparisons with other matrix factorization methods are demonstrated using a real STEM-EELS dataset.</p>

Journal

  • Transactions of the Materials Research Society of Japan

    Transactions of the Materials Research Society of Japan 41(4), 333-336, 2016

    The Materials Research Society of Japan

Codes

  • NII Article ID (NAID)
    130005172417
  • Text Lang
    ENG
  • ISSN
    1382-3469
  • Data Source
    J-STAGE 
Page Top