Hydrogen Production by Steam Reforming of Ethanol over Pt/CeO<sub>2</sub> Catalyst in Electric Field at Low Temperature

Bibliographic Information

Other Title
  • セリア担持白金触媒を用いた低温電場中でのエタノール水蒸気改質による水素製造
  • Hydrogen Production by Steam Reforming of Ethanol over Pt/CeO₂ Catalyst in Electric Field at Low Temperature

Search this article

Abstract

<p>Catalytic ethanol steam reforming was investigated over Pt/CeO2 catalyst in an electric field at low temperature, and the effect of the electric field and controlling factors for the activity and selectivity were examined. With the electric field, ethanol steam reforming proceeded at temperatures as low as 423 K, at which the conventional catalytic reaction hardly proceeded. Supported platinum acted as an active site for ethanol steam reforming. Conversion of ethanol and H2 yield drastically increased with the electric field, and apparent activation energies for ethanol dehydrogenation, acetaldehyde decomposition, and acetaldehyde steam reforming were lowered by the electric field. In-situ DRIFTS measurements revealed that the adsorbed ethanol formed reactive acetate species with the electric field even at low temperature, which improved hydrogen selectivity. This process can produce hydrogen from bioethanol using less energy at low temperatures, such as 423 K, with high efficiency.</p>

Journal

Citations (4)*help

See more

References(38)*help

See more

Related Projects

See more

Details 詳細情報について

Report a problem

Back to top