Emerging links between iron-sulfur clusters and 5-methylcytosine base excision repair in plants

Access this Article

Search this Article

Author(s)

Abstract

<p>Iron-sulfur (Fe-S) clusters are ancient cofactors present in all kingdoms of life. Both the Fe-S cluster assembly machineries and target apoproteins are distributed across different subcellular compartments. The essential function of Fe-S clusters in nuclear enzymes is particularly difficult to study. The base excision repair (BER) pathway guards the integrity of DNA; enzymes from the DEMETER family of DNA glycosylases in plants are Fe-S cluster-dependent and extend the BER repertowere to excision of 5-methylcytosine (5mC). Recent studies in plants genetically link the majority of proteins from the cytosolic Fe-S cluster biogenesis (CIA) pathway with 5mC BER and DNA repair. This link can now be further explored. First, it opens new possibilities for understanding how Fe-S clusters participate in 5mC BER and related processes. I describe DNA-mediated charge transfer, an Fe-S cluster-based mechanism for locating base lesions with high efficiency, which is used by bacterial DNA glycosylases encoding Fe-S cluster binding domains that are also conserved in the DEMETER family. Second, because detailed analysis of the mutant phenotype of CIA proteins relating to 5mC BER revealed that they formed two groups, we may also gain new insights into both the composition of the Fe-S assembly pathway and the biological contexts of Fe-S proteins.</p>

Journal

  • Genes & Genetic Systems

    Genes & Genetic Systems 91(2), 51-62, 2016

    The Genetics Society of Japan

Codes

  • NII Article ID (NAID)
    130005421223
  • NII NACSIS-CAT ID (NCID)
    AA11077421
  • Text Lang
    ENG
  • ISSN
    1341-7568
  • NDL Article ID
    027634708
  • NDL Call No.
    Z53-W539
  • Data Source
    NDL  J-STAGE 
Page Top