Characterization of Shiga toxin-producing <i>Escherichia coli</i> from feces of sika deer (<i>Cervus nippon</i>) in Japan using PCR binary typing analysis to evaluate their potential human pathogenicity

  • KABEYA Hidenori
    Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
  • SATO Shingo
    Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
  • ODA Shinya
    Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
  • KAWAMURA Megumi
    Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
  • NAGASAKA Mariko
    Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
  • KURANAGA Masanari
    Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
  • YOKOYAMA Eiji
    Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2 Nitona-cho, Chuo-ku, Chiba-shi, Chiba 260-8715, Japan
  • HIRAI Shinichiro
    Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2 Nitona-cho, Chuo-ku, Chiba-shi, Chiba 260-8715, Japan
  • IGUCHI Atsushi
    Department of Animal and Grassland Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
  • ISHIHARA Tomoe
    Department of Microbiology, Kanagawa Prefectural Institute of Public Health, 1-3-1 Shimomachiya, Chigasaki-shi, Kanagawa 253-0087, Japan
  • KUROKI Toshiro
    Department of Planning and Information, Kanagawa Prefectural Institute of Public Health, 1-3-1 Shimomachiya, Chigasaki-shi, Kanagawa 253-0087, Japan
  • MORITA-ISHIHARA Tomoko
    Department of Bacteriology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
  • IYODA Sunao
    Department of Bacteriology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
  • TERAJIMA Jun
    Division of Microbiology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
  • OHNISHI Makoto
    Department of Bacteriology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
  • MARUYAMA Soichi
    Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan

この論文をさがす

抄録

This study examined the potential pathogenicity of Shiga toxin-producing Escherichia coli (STEC) in feces of sika deer by PCR binary typing (P-BIT), using 24 selected STEC genes. A total of 31 STEC strains derived from sika deer in 6 prefectures of Japan were O-serotyped and found to be O93 (n=12), O146 (n=5), O176 (n=3), O130 (n=3), O5 (n=2), O7 (n=1), O96 (n=1), O116 (n=1), O141 (n=1), O157 (n=1) and O-untypable (n=1). Of the 31 STEC strains, 13 carried both stx1 and stx2, 5 carried only stx1, and 13 carried one or two variants of stx2. However, no Stx2 production was observed in 3 strains that carried only stx2: the other 28 strains produced the appropriate Stx. P-BIT analysis showed that the 5 O5 strains from two wild deer formed a cluster with human STEC strains, suggesting that the profiles of the presence of the 24 P-BIT genes in the deer strains were significantly similar to those in human strains. All of the other non-O157 STEC strains in this study were classified with strains from food, domestic animals and humans in another cluster. Good sanitary conditions should be used for deer meat processing to avoid STEC contamination, because STEC is prevalent in deer and deer may be a potential source of STEC causing human infections.

収録刊行物

被引用文献 (3)*注記

もっと見る

参考文献 (43)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ