A novel hardware-efficient gene network model based on asynchronous cellular automaton dynamics

抄録

The gene affects various behaviors of animals such as circadian rhythm, courtship behavior, motor behavior, visual behavior, and learning. The circadian rhythm is a biological rhythm having a period of almost 24 hours, which is sometimes called internal clock or biological clock. In this paper, a novel asynchronous cellular automaton model of a gene network is proposed, where its vector field is designed based on an ordinary differential equation gene network model. It is shown that the proposed model can reproduce typical phenomena (e.g., oscillations, mutual synchronization, locking to light stimulation, and related bifurcations) observed in the differential equation gene network model. It is also shown that the proposed model can be implemented on an FPGA by using much less hardware resource compared to the differential equation model

収録刊行物

被引用文献 (2)*注記

もっと見る

参考文献 (11)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ