Cooling rate responsiveness of pyroxene geothermometry

Access this Article

Search this Article

Author(s)

Abstract

<p>Geothermometry is fundamentally important to explore thermal processes within the Earth. An extremely popular geothermometer is the two-pyroxene thermometer, which is based on the temperature dependence of elemental partitioning between pyroxenes in a rock. This technique is ambiguous in terms of its responsiveness to change in the temperature of the system. We performed a numerical simulation of one-dimensional calcium diffusion in a clinopyroxene using Ca-Mg inter-diffusion coefficients. While applying the simulation to rock bodies with various temperature conditions and both heating and cooling rates, we investigated the time scale for the re-equilibration of elemental partitioning between enstatite and diopside. Those results enable us to evaluate the responsiveness of the two-pyroxene thermometer to change in temperature. For heating processes up to 1300°C, chemical zoning is not well developed at a heating rate faster than 10°C/yr because the duration for the diffusion is insufficient. In addition, at a heating rate 10<sup>–4</sup>°C/yr and >1200°C, the simulated diffusion profiles show no chemical zoning. This occurs because the chemical equilibrium between the pyroxenes is achieved via elemental diffusion. For cooling processes, a rock body will cool down to closure temperature before making an observable zoning at a high cooling rate such as 100°C/yr. In addition, no detectable zoning of Ca in clinopyroxene developed under high temperature (>~1100°C) and a slow cooling rate (<~10<sup>–4</sup>°C/yr) down to 700°C, properly reflecting temperature without detectable zoning of Ca. In contrast, for a rock body with detectable chemical zoning, it is difficult to ascertain the appropriate pyroxene temperature. Model diffusion profiles reflect conditions of changing temperature. Therefore, a graphic representation of diffusion profiles under various initial temperatures and different rates of temperature change would be useful to estimate the thermal history of rock bodies.</p>

Journal

  • GEOCHEMICAL JOURNAL

    GEOCHEMICAL JOURNAL 51(6), 457-467, 2017

    GEOCHEMICAL SOCIETY OF JAPAN

Codes

  • NII Article ID (NAID)
    130006243141
  • NII NACSIS-CAT ID (NCID)
    AA00654975
  • Text Lang
    ENG
  • ISSN
    0016-7002
  • NDL Article ID
    028718798
  • NDL Call No.
    Z53-R488
  • Data Source
    NDL  J-STAGE 
Page Top