Effect of anodizing time on multiscale porous structure of Ti–Al alloy microchannel wall

Bibliographic Information

Other Title
  • Ti–Al系合金マイクロチャンネル内壁のマルチスケールポーラス構造に及ぼす陽極酸化時間の影響
  • Ti-Alケイ ゴウキン マイクロチャンネル ナイヘキ ノ マルチスケールポーラス コウゾウ ニ オヨボス ヨウキョク サンカ ジカン ノ エイキョウ

Search this article

Abstract

<p>Effect of anodizing time on the multiscale porous structure of the inner wall of the microchannel produced in a titanium alloy body has been investigated. The microchannel was produced by a powder-metallurgical process in which a titanium-powder compact containing thin aluminum wire was sintered at a temperature above the melting point of aluminum. During sintering, microscopic infiltration of molten aluminum into the porosity of the compacted titanium powder and subsequent diffusion of aluminum into the titanium powder particles brought about the formation of a microchannel lined with Ti–Al alloy layer in the sintered body. The inner walls of the microchannels with uniform composition, Ti–18.0(±1.8)mol%Al, were provided for anodizing experiments. When the anodizing time was in the range from 1.8 to 28.8 ks, the structure of the anodic oxide film was nanotube array. Each specimen had a microchannel of several hundred micrometers in diameter, inner wall asperity of several ten micrometers in size, and nanotube array structure of the anodic oxide film. In the specimen anodized for 59.6 ks, on the other hand, the nanotube array had changed to a different structure resembling that of nanoporous metals produced by dealloying.</p>

Journal

References(16)*help

See more

Details 詳細情報について

Report a problem

Back to top