A MEMORYLESS SYMMETRIC RANK-ONE METHOD WITH SUFFICIENT DESCENT PROPERTY FOR UNCONSTRAINED OPTIMIZATION

この論文にアクセスする

この論文をさがす

著者

抄録

<p>Quasi-Newton methods are widely used for solving unconstrained optimization problems. However, it is difficult to apply quasi-Newton methods directly to large-scale unconstrained optimization problems, because they need the storage of memories for matrices. In order to overcome this difficulty, memoryless quasi-Newton methods were proposed. Shanno (1978) derived the memoryless BFGS method. Recently, several researchers studied the memoryless quasi-Newton method based on the symmetric rank-one formula. However existing memoryless symmetric rank-one methods do not necessarily satisfy the sufficient descent condition. In this paper, we focus on the symmetric rank-one formula based on the spectral scaling secant condition and derive a memoryless quasi-Newton method based on the formula. Moreover we show that the method always satisfies the sufficient descent condition and converges globally for general objective functions. Finally, preliminary numerical results are shown.</p>

収録刊行物

  • 日本オペレーションズ・リサーチ学会論文誌

    日本オペレーションズ・リサーチ学会論文誌 61(1), 53-70, 2018

    公益社団法人 日本オペレーションズ・リサーチ学会

各種コード

  • NII論文ID(NAID)
    130006301100
  • NII書誌ID(NCID)
    AA00703935
  • 本文言語コード
    ENG
  • ISSN
    0453-4514
  • NDL 記事登録ID
    028775525
  • NDL 請求記号
    Z53-M226
  • データ提供元
    NDL  J-STAGE 
ページトップへ