Ultra-sensitive Trace-Water Optical Sensor with <i>In situ</i>- synthesized Metal–Organic Framework in Glass Paper

この論文にアクセスする

この論文をさがす

著者

抄録

Monitoring of trace water in industrial gases is strongly recommended because contaminants cause serious problems during use, especially in the semiconductor industry. An ultra-sensitive trace-water sensor was developed with an <i>in situ</i>-synthesized metal–organic framework as the sensing material. The sample gas is passed through the sensing membrane and efficiently and rapidly collected by the sensing material in the newly designed gas collection/detection cell. The sensing membrane, glass paper impregnated with copper 1,3,5-benzenetricarboxylate (Cu-BTC), is also newly developed. The amount and density of the sensing material in the sensing membrane must be well balanced to achieve rapid and sensitive responses. In the present study, Cu-BTC was synthesized <i>in situ</i> in glass paper. The developed system gave high sensing performances with a limit of detection (signal/noise ratio = 3) of 9 parts per billion by volume (ppbv) H<sub>2</sub>O and a 90% response time of 86 s for 200 ppbv H<sub>2</sub>O. The reproducibility of the responses within and between lots had relative standard deviations for 500 ppbv H<sub>2</sub>O of 0.8% (<i>n</i> = 10) and 1.5% (<i>n</i> = 3), respectively. The long-term (2 weeks) stability was 7.3% for 400 ppbv H<sub>2</sub>O and one-year continuous monitoring test showed the sensitivity change of <∼3% before and after the study. Furthermore, the system response was in good agreement with the response achieved in cavity ring-down spectroscopy. These performances are sufficient for monitoring trace water in industrial gases. The integrated system with light and gas transparent structure for gas collection/absorbance detection can also be used for other target gases, using specific metal–organic frameworks.

収録刊行物

  • Analytical Sciences

    Analytical Sciences 34(4), 495-500, 2018

    社団法人 日本分析化学会

各種コード

  • NII論文ID(NAID)
    130006682640
  • NII書誌ID(NCID)
    AA10500785
  • 本文言語コード
    ENG
  • ISSN
    0910-6340
  • NDL 記事登録ID
    028942686
  • NDL 請求記号
    Z54-F482
  • データ提供元
    NDL  J-STAGE 
ページトップへ