減圧軽油中の塩基性物質の除去とアルキル多環芳香族の脱アルキル化反応 Removal of Basic Compounds and Dealkylation of Alkyl Polycyclic Aromatic Hydrocarbons in Vacuum Gas Oil

Access this Article

Search this Article

Author(s)

    • 中野 史哉 Nakano Fumiya
    • 鳥取大学大学院工学研究科 Dept. of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University
    • 長野 聡子 Nagano Satoko
    • 鳥取大学大学院工学研究科 Dept. of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University
    • 辻 悦司 Tsuji Etsushi
    • 鳥取大学大学院工学研究科 Dept. of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University
    • 片田 直伸 Katada Naonobu
    • 鳥取大学大学院工学研究科 Dept. of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University

Abstract

<p>我々が提案する新たな重質油のアップグレーディング法では,シリカモノレイヤー固体酸触媒によるアルキル多環芳香族の脱アルキル化を利用し,鎖長を保ったアルカンとアルキル鎖をもたない芳香族が生成可能である。この方法はディーゼル燃料に適したアルカン,ガソリンと化成品原料に適したアルキルベンゼンの収率を最大化できる。実油の減圧軽油を用いた反応では反応の進行が塩基性物質によって阻害されるが,塩基性物質は溶液に強酸性カチオン交換樹脂やアモルファスシリカアルミナを投入して混合することで吸着除去できる。特に,乾燥したアモルファスシリカアルミナは吸着速度が大きく,使用後に酸素中で焼成することで再生可能である。除去後の減圧軽油中のアルキル多環芳香族の脱アルキル化は反応温度723 Kで高い目的物選択率を維持できる。また,触媒は緩やかな劣化を示すが,酸素中773 Kで焼成することで再生可能である。</p>

<p>We propose a novel method to upgrade heavy oil. This method utilizes dealkylation of alkyl polycyclic aromatic hydrocarbons on a silica monolayer solid acid catalyst to produce alkanes with preserved alkyl chain length and aromatic hydrocarbons without alkyl groups, resulting in maximization of the yields of value-added products, alkanes suitable for diesel fuel and alkylbenzenes suitable for gasoline and chemical feedstocks. Basic compounds in vacuum gas oil were found to inhibit the reaction, but were removed by treatment with solid acids such as strongly acidic cation exchange resin and amorphous silica_alumina. Drying of the silica_alumina significantly enhanced the removal rate. The silica_alumina was repeatedly usable by calcination in an oxygen flow. After the treatments for the removal of basic compounds, dealkylation of alkyl polycyclic aromatic hydrocarbons proceeded at 673 K. However, rapid catalyst deactivation was observed. Higher reaction temperature of 723 K suppressed deactivation of the catalyst and maintained the high selectivity. Even in the optimized conditions, slow deactivation of the catalyst was observed, but the catalyst was regenerated by calcination at 773 K in oxygen, and the catalytic performance was repeatedly demonstrated.</p>

Journal

  • Journal of the Japan Petroleum Institute

    Journal of the Japan Petroleum Institute 61(5), 294-301, 2018

    The Japan Petroleum Institute

Codes

  • NII Article ID (NAID)
    130007480047
  • NII NACSIS-CAT ID (NCID)
    AA11590615
  • Text Lang
    ENG
  • ISSN
    1346-8804
  • NDL Article ID
    029253442
  • NDL Call No.
    Z17-177
  • Data Source
    NDL  J-STAGE 
Page Top