Relation of Convective Bursts to Changes in the Intensity of Typhoon Lionrock (2016) during the Decay Phase Simulated by an Atmosphere-Wave-Ocean Coupled Model

Access this Article

Search this Article



<p> Typhoon Lionrock (2016) made landfall in the Pacific side of northern Japan. One of the intriguing events was consecutive deep convections (convective bursts, CBs) occurred before making landfall on 31 August. Lionrock paused the decay of the intensity of the storm, although sea surface cooling (SSC) was induced distinctly by Lionrock along the track. To examine the influence of CBs on changes in storm intensity during the decay phase, numerical simulations were conducted with a 3 km mesh coupled atmosphere-wave-ocean model. The coupled model successfully simulated the occurrence of CBs north of the near-surface-convergence area, which was formed by the confluent of the storm's tangential winds with near-surface frictional spiral inflow from the surrounding region where the significant wave height was high. Simultaneously, the relatively fast translation and asymmetric tropical cyclone (TC) structure were maintained. Lower tropospheric horizontal moisture fluxes have enhanced around the convergence area, although SSC resulted in reduction of the air-sea latent heat fluxes within the storm's inner core. Local occurrences of upward moisture fluxes associated with CBs increased the mid-to-upper tropospheric condensational heating on the upstream side. This caused local increase in lower-tropospheric pressure gradient on the upstream side. This was favorable for pausing the decay of the simulated storm intensity even during the decay phase. Sensitivity experiments regarding the execution time of the coupled model showed that the vertical moisture fluxes and number of CBs could increase around the surface frictional convergence area ahead of the storm when the coupled model was not used. This suggests that the storm in mid-latitude could locally increase the maximum surface wind speed under favorable oceanic conditions. The number and distribution of CBs are indeed sensitive to oceanic conditions and are considered to affect the storm-track simulation and maximum surface wind speeds.</p>


  • Journal of the Meteorological Society of Japan. Ser. II

    Journal of the Meteorological Society of Japan. Ser. II 96(6), 489-509, 2018

    Meteorological Society of Japan


  • NII Article ID (NAID)
  • Text Lang
  • ISSN
  • NDL Article ID
  • NDL Call No.
  • Data Source
Page Top