Tissue-specific alternative splicing of pentatricopeptide repeat (PPR) family genes in <i>Arabidopsis thaliana </i>

  • Qulsum Umme
    School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST)
  • Tsukahara Toshifumi
    School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST) Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST) Division of Transdisciplinary Science, Japan Advanced Institute of Science and Technology (JAIST)

Search this article

Abstract

<p>Alternative splicing is a post- and co-transcriptional regulatory mechanism of gene expression. Pentatricopeptide repeat (PPR) family proteins were recently found to be involved in RNA editing in plants. The aim of this study was to investigate the tissue-specific expression and alternative splicing of PPR family genes and their effects on protein structure and functionality. Of the 27 PPR genes in Arabidopsis thaliana, we selected six PPR genes of the P subfamily that are likely alternatively spliced, which were confirmed by sequencing. Four of these genes show intron retention, and the two remaining genes have 3' alternative-splicing sites. Alternative-splicing events occurred in the coding regions of three genes and in the 3' UTRs of the three remaining genes. We also identified five previously unannotated alternatively spliced isoforms of these PPR genes, which were confirmed by PCR and sequencing. Among these, three contain 3' alternative-splicing sites, one contains a 5' alternative-splicing site, and the remaining gene contains a 3'-5' alternative-splicing site. The new isoforms of two genes affect protein structure, and three other alternative-splicing sites are located in 3' UTRs. These findings suggest that tissue-specific expression of different alternatively spliced transcripts occurs in Arabidopsis, even at different developmental stages.</p>

Journal

  • BioScience Trends

    BioScience Trends 12 (6), 569-579, 2018-12-31

    International Research and Cooperation Association for Bio & Socio-Sciences Advancement

Citations (1)*help

See more

References(45)*help

See more

Related Projects

See more

Details 詳細情報について

Report a problem

Back to top