マグネシウムの靱性・延性に及ぼす添加元素の影響  [in Japanese] Effect of Alloying Elements on Toughness and Ductility of Magnesium  [in Japanese]

Access this Article

Search this Article

Author(s)

    • 染川 英俊 Somekawa Hidetoshi
    • 国立研究開発法人 物質・材料研究機構 構造材料研究拠点 Research Center for Structural Materials, National Institute for Materials Science

Abstract

<p>Development of magnesium alloys, which exhibit high strength and high ductility (fracture toughness), is critical for ensuring safety and reliability in structural applications. It is well-known that grain refinement and/or alloying are impressive strategies to attain such properties in metallic materials. In the former case, grain boundaries of magnesium and its alloys have unique characteristics, e.g., sites for non-basal dislocation activity and occurrence of partial grain boundary sliding. As a result, strength as well as ductility (fracture toughness) tend to increase and improve with grain refinement. In the latter case, 29 types of solid solution elements, which have a maximum solubility of more than 0.1 at%, can dissolve in magnesium. Several elements are generally added to magnesium simultaneously to achieve good mechanical properties via a synergistic effect. In industrial fields, ternary magnesium alloys such as Mg-Al-Zn and Mg-Zn-Zr alloys, which have fine-grained structures, have been widely used; however, there is no still clear and systematic understanding of the impact of various alloying elements on properties for magnesium. In this paper, we review recent results on the effect of solid solution alloying elements on ductility (fracture toughness), with focusing on polycrystalline binary magnesium alloys. Regarding the toughness, crack-propagation behavior and/or fracture behavior are quite sensitive to the alloying element, regardless of the grain size. Twin boundaries in particular are recognized as harmful defects, because the act as crack-propagation site. Nevertheless, changing the electric bonding behavior through alloying has the potential to increase toughness. As for the ductility, alloying elements also dramatically affect the room-temperature plastic deformation; activation of not only non-basal dislocation slip but also grain boundary sliding plays a notable role in enhancing the elongation-to-failure in tension.</p>

<p>Development of magnesium alloys, which exhibit high strength and high ductility (fracture toughness), is critical for ensuring safety and reliability in structural applications. It is well-known that grain refinement and/or alloying are impressive strategies to attain such properties in metallic materials. In the former case, grain boundaries of magnesium and its alloys have unique characteristics, e.g., sites for non-basal dislocation activity and occurrence of partial grain boundary sliding. As a result, strength as well as ductility (fracture toughness) tend to increase and improve with grain refinement. In the latter case, 29 types of solid solution elements, which have a maximum solubility of more than 0.1 at%, can dissolve in magnesium. Several elements are generally added to magnesium simultaneously to achieve good mechanical properties via a synergistic effect. In industrial fields, ternary magnesium alloys such as Mg-Al-Zn and Mg-Zn-Zr alloys, which have fine-grained structures, have been widely used; however, there is no still clear and systematic understanding of the impact of various alloying elements on properties for magnesium. In this paper, we review recent results on the effect of solid solution alloying elements on ductility (fracture toughness), with focusing on polycrystalline binary magnesium alloys. Regarding the toughness, crack-propagation behavior and/or fracture behavior are quite sensitive to the alloying element, regardless of the grain size. Twin boundaries in particular are recognized as harmful defects, because the act as crack-propagation site. Nevertheless, changing the electric bonding behavior through alloying has the potential to increase toughness. As for the ductility, alloying elements also dramatically affect the room-temperature plastic deformation; activation of not only non-basal dislocation slip but also grain boundary sliding plays a notable role in enhancing the elongation-to-failure in tension.</p>

Journal

  • Journal of the Japan Institute of Metals and Materials

    Journal of the Japan Institute of Metals and Materials 83(3), 65-75, 2019

    The Japan Institute of Metals and Materials

Codes

  • NII Article ID (NAID)
    130007604054
  • NII NACSIS-CAT ID (NCID)
    AN00062446
  • Text Lang
    JPN
  • ISSN
    0021-4876
  • NDL Article ID
    029550642
  • NDL Call No.
    Z17-314
  • Data Source
    NDL  J-STAGE 
Page Top