Emergent electromagnetism in condensed matter

  • NAGAOSA Naoto
    RIKEN Center for Emergent Matter Science (CEMS) Department of Applied Physics, The University of Tokyo

Search this article

Abstract

<p>Electrons in solids constitute quantum many-body systems showing a variety of phenomena. It often happens that the eigen states of the Hamiltonian are classified into subgroups separated by energy gaps. Band structures in solids and spin polarization in Mott insulators are two representative examples. The subspace spanned by these wavefunctions belonging to each of this subgroup can be regarded as a manifold in Hilbert space, and concepts concerning differential geometry become relevant. Connection and curvature are two key quantities, which correspond to the vector potential and field strength of electromagnetism, respectively. Therefore, one can construct an effective electromagnetic field from the structure of the Hilbert space, which is called an “emergent electromagnetic field”. In this article, we review the physics related to this emergent electromagnetic field in solids, including the gauge theory of strongly correlated electrons, various Hall effects, multiferroics, topological matter, magnetic texture such as skyrmions, and the shift current in noncentrosymmetric materials.</p>

Journal

Citations (4)*help

See more

References(34)*help

See more

Related Projects

See more

Details 詳細情報について

Report a problem

Back to top