Supplemental study on 2’, 3’-Cyclic Nucleotide 3’-Phosphodiesterase (CNPase) activity in developing rat spinal cord lesions induced by hexachlorophene and cuprizone

  • KANNO Takeshi
    Pathology Department, Kashima Laboratory, Nonclinical Research Center, LSI Medience Corporation, 14-1 Sunayama, Kamisu, Ibaraki 314-0255, Japan
  • KUROTAKI Tetsuro
    Pathology Department, Kashima Laboratory, Nonclinical Research Center, LSI Medience Corporation, 14-1 Sunayama, Kamisu, Ibaraki 314-0255, Japan
  • YAMADA Naoaki
    Pathology Department, Kashima Laboratory, Nonclinical Research Center, LSI Medience Corporation, 14-1 Sunayama, Kamisu, Ibaraki 314-0255, Japan
  • TOMONARI Yuki
    Pathology Department, Kashima Laboratory, Nonclinical Research Center, LSI Medience Corporation, 14-1 Sunayama, Kamisu, Ibaraki 314-0255, Japan
  • SATO Junko
    Pathology Department, Kashima Laboratory, Nonclinical Research Center, LSI Medience Corporation, 14-1 Sunayama, Kamisu, Ibaraki 314-0255, Japan
  • TSUCHITANI Minoru
    Pathology Department, Kashima Laboratory, Nonclinical Research Center, LSI Medience Corporation, 14-1 Sunayama, Kamisu, Ibaraki 314-0255, Japan
  • KOBAYASHI Yoshiyasu
    School of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan

Search this article

Abstract

<p>In a previous study, we showed that 2’, 3’-Cyclic Nucleotide 3’-Phosphodiesterase (CNPase) expression is induced in different temporal patterns in the cerebrum, cerebellum and medulla oblongata of hexachlorophene (HCP) and cuprizone (CPZ) treated rats. Here, we additionally examined the histopathological changes and CNPase expression in the spinal cord to clarify the reproducibility of different temporal patterns of CNPase expression in the spinal cord showing low degree or lack of spongy changes. Spongy changes were observed in HCP-treated rats, but not in CPZ-treated rats. Immunohistochemistry showed that intense expression of CNPase was not induced following HCP or CPZ treatment. Our data reveal that expression intensity of CNPase may be dependent on the degree of HCP- and CPZ-induced damage of the myelin sheath.</p>

Journal

References(11)*help

See more

Related Projects

See more

Details 詳細情報について

Report a problem

Back to top