Fluorescent Sensors Based on a Novel Functional Design: Combination of an Environment-sensitive Fluorophore with Polymeric and Self-assembled Architectures

DOI Web Site Web Site 参考文献108件 オープンアクセス
  • 内山 聖一
    Graduate School of Pharmaceutical Sciences, The University of Tokyo

この論文をさがす

抄録

<p>The fluorescence properties, e.g., fluorescence intensity, of fluorescent sensors can change due to covalent derivatization or noncovalent complexation with a target chemical species (i.e., molecules and ions) or by variations in circumstantial physical parameters (e.g., temperature and viscosity). The internal charge transfer (ICT) character and photoinduced electron transfer (PET) efficiency can be used to tune the fluorescence switching mechanism, facilitating the development of new fluorescent sensors. In addition, the utilization of an environment-sensitive (i.e., polarity- and hydrogen bonding-sensitive) fluorophore in stimulus-responsive macromolecules to design novel fluorescent sensors has been proposed. Based on this concept, highly sensitive fluorescent polymeric thermometers and (extremely sensitive) digital fluorescent pH sensors have been developed. These thermometers are being used to measure the temperature of live cells in biological and medical studies. This concept has also allowed nanoscale proton mapping near membranes, which exemplifies the downsizing of targets for fluorescent sensing from a micrometer-scale to a nanometer-scale.</p>

収録刊行物

参考文献 (108)*注記

もっと見る

関連プロジェクト

もっと見る

キーワード

詳細情報 詳細情報について

問題の指摘

ページトップへ