Reduced fibrillar collagen accumulation in skeletal muscle of secreted protein acidic and rich in cysteine (SPARC)-null mice

DOI Web Site PubMed 参考文献16件 オープンアクセス
  • OMI Sanae
    Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
  • YAMANOUCHI Keitaro
    Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
  • NAKAMURA Katsuyuki
    Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
  • MATSUWAKI Takashi
    Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
  • NISHIHARA Masugi
    Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan

この論文をさがす

抄録

<p>We have previously shown that secreted protein acidic and rich in cysteine (SPARC) promotes myogenic differentiation of rat skeletal muscle progenitor cells in vitro, and in vivo small interfering RNA (siRNA)-mediated transient suppression of SPARC expression in skeletal muscle of mice causes atrophic changes of myofibers, suggesting that SPARC plays a role in the maintenance of skeletal muscle function. In order to know the effect of long-term deficiency of SPARC on skeletal muscle, we performed phenotypic analyses of skeletal muscle of SPARC-null mice. Age-associated changes of myofiber diameters were comparable between wild type (WT) and SPARC-null mice at all ages examined, indicating that the growth of myofibers is unaffected by the absence of SPARC. On the other hand, accumulation of fibrillar collagen was significantly reduced in SPARC-null mice compared to WT mice after 5 months of age without significant changes of collagen I gene expression. The results obtained in the present study suggest that SPARC plays a role to maintain the stiffness of skeletal muscle by regulating collagen accumulation.</p>

収録刊行物

参考文献 (16)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ