Simple Identification of Cerebrospinal Fluid Turbulent Motion Using a Dynamic Improved Motion-sensitized Driven-equilibrium Steady-state Free Precession Method Applied to Various Types of Cerebrospinal Fluid Motion Disturbance

  • ATSUMI Hideki
    Department of Neurosurgery, Tokai University School of Medicine
  • HORIE Tomohiko
    Division of Diagnostic Image Analysis, Tohoku University Graduate School of Medicine Department of Radiology, Tokai University School of Medicine
  • KAJIHARA Nao
    Department of Radiology, Tokai University School of Medicine
  • SUNAGA Azusa
    Department of Neurosurgery, Tokai University School of Medicine
  • SAKAKIBARA Yumetaro
    Department of Neurosurgery, Tokai University School of Medicine
  • MATSUMAE Mitsunori
    Department of Neurosurgery, Tokai University School of Medicine

この論文をさがす

抄録

<p>The motion of cerebrospinal fluid (CSF) within the subarachnoid space and ventricles is greatly modulated when propagating synchronously with the cardiac pulse and respiratory cycle and path through the nerves, blood vessels, and arachnoid trabeculae. Water molecule movement that propagates between two spaces via a stoma, foramen, or duct presents increased acceleration when passing through a narrow area and can exhibit “turbulence.” Recently, neurosurgeons have started to perform fenestration procedures using neuroendoscopy to treat hydrocephalus and cystic lesions. As part of the postoperative evaluation, a noninvasive diagnostic technique to visualize the water molecules at the fenestrated site is necessary. Because turbulence is observed at this fenestrated site, an imaging technique appropriate for observing this turbulence is essential. We therefore investigated the usefulness of a dynamic improved motion-sensitized driven-equilibrium steady-state free precession (Dynamic iMSDE SSFP) sequence of magnetic resonance imaging that is superior for ascertaining turbulent motions in healthy volunteers and patients. Images of Dynamic iMSDE SSFP from volunteers revealed that CSF motion at the ventral surface of the brainstem and the third ventricle is augmented and turbulent. Moreover, our findings confirmed that this technique is useful for evaluating treatments that utilize neuroendoscopy. As a result, Dynamic iMSDE SSFP, a simple sequence for visualizing CSF motion, entails a short imaging time, can extensively visualize CSF motion, does not require additional processes such as labeling or trigger setting, and is anticipated to have wide-ranging clinical applications in the future.</p>

収録刊行物

被引用文献 (2)*注記

もっと見る

参考文献 (20)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ