mRNA and P-element-induced wimpy testis-interacting RNA profile in chemical-induced oral squamous cell carcinoma mice model

  • Wu Lihong
    Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China
  • Jiang Yingtong
    Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China
  • Zheng Zhichao
    Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China
  • Li Hongtao
    State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, Guangdong 510230, China
  • Cai Meijuan
    Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China
  • Pathak Janak L.
    Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China
  • Li Zhicong
    Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China
  • Huang Lihuan
    Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China
  • Zeng Mingtao
    Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China Center of Emphasis in Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
  • Zheng Huade
    School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510006, China National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510006, China Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510006, China
  • Ouyang Kexiong
    Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China
  • Gao Jie
    Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China

Search this article

Abstract

<p>P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs), a novel class of noncoding RNAs, are involved in the carcinogenesis. However, the functional significance of piRNAs in oral squamous cell carcinoma (OSCC) remains unknown. In the present study, we used chemical carcinogen 4-nitroquinoline-1-oxide (4NQO) induced OSCC mouse model. piRNAs and mRNAs were profiled using next-generation sequencing in the tongue tumor tissues from 4NQO induction and healthy tongue tissues from control mice. Furthermore, we analyzed the differential gene expression of human OSCC in Gene Expression Omnibus (GEO) database. According to the common differentially expressed genes in the 4NQO model and human OSCC tissues, piRNAs and mRNAs network were established based on informatics method. A total of 14 known piRNAs and 435 novel predicted piRNAs were differently expressed in tumor tissue compared to healthy tissue. Among differently expressed piRNAs 260 were downregulated, and 189 were upregulated. The mRNA targets for the differentially expressed piRNAs were identified using RNAhybrid software. Primary immunodeficiency and herpes simplex infection were the most enriched pathways. A total of 22 mRNAs overlapped in human and mice OSCC. Moreover, we established the regulatory network of 11 mRNAs, including Tmc5, Galnt6, Spedf, Mybl2, Muc5b, Six31, Pigr, Lamc2, Mmp13, Mal, and Mamdc2, and 11 novel piRNAs. Our data showed the interaction between piRNAs and mRNAs in OSCC, which might provide new insights in the development of diagnostic biomarkers and therapeutic targets of OSCC.</p>

Journal

  • Experimental Animals

    Experimental Animals 69 (2), 168-177, 2020

    Japanese Association for Laboratory Animal Science

References(30)*help

See more

Details 詳細情報について

Report a problem

Back to top