Toll-Like Receptor 4 Inhibitor TAK-242 Augments Acetylcholine-Induced Relaxation in Superior Mesenteric Arteries of the Streptozotocin-Induced Diabetic Rat

  • Matsumoto Takayuki
    Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
  • Takayanagi Keisuke
    Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
  • Kojima Mihoka
    Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
  • Taguchi Kumiko
    Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
  • Kobayashi Tsuneo
    Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University

この論文をさがす

抄録

<p>Although vascular dysfunction is a key event in the development of diabetic complications, and abnormal toll-like receptor 4 (TLR4) may contribute to the pathophysiology of vascular diseases, the direct relationships between TLR4 and vascular function in diabetic arteries are still poorly understood. Thus, to investigate whether pharmacological blockade of TLR4 affects vascular function in the superior mesenteric artery (SMA) of streptozotocin (STZ)-induced diabetic rats, the SMA was isolated from male Wistar rat injected once with STZ (65 mg/kg, 27–34 weeks) which was treated with TAK-242 (10−6 M), a TLR4 inhibitor, for approximately 1 d using organ culture techniques. After incubation, functional and biochemical studies were performed. In the functional study, treatment with TAK-242 increased acetylcholine (ACh)-induced relaxation of the diabetic SMA in the intact condition. Sodium nitroprusside (SNP)-induced relaxation was also increased in the TAK-242-treated group compared with the vehicle-treated group. Under cyclooxygenase (COX) blockade by indomethacin (10−5 M), ACh-induced relaxation was similar in the vehicle- and TAK-242-treated groups. In addition, ACh-induced relaxation in the combined presence of the nitric oxide (NO) synthase inhibitor, NG-nitro-L-arginine (L-NNA) (10−4 M), and indomethacin (10−5 M) was similar in the vehicle- and TAK-242-treated groups. The productions of thromboxane (TX) B2 in cultured medium in the presence of ACh (10−5 M) were lower in the TAK-242-treated group than in the vehicle-treated group. These data suggested that TAK-242 could augment endothelium-dependent relaxation by partly suppressing vasoconstrictor TXA2 or increasing NO signaling. TLR4 inhibition may be a novel therapeutic strategy to assist in the management of diabetes-associated vascular complications.</p>

収録刊行物

参考文献 (20)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ