Adhesion mechanisms of <i>Bifidobacterium animalis</i> subsp. <i>lactis</i> JCM 10602 to dietary fiber

  • TANIGUCHI Maria
    Chemistry, Materials and Bioengineering Major, Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
  • NAMBU Minori
    Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
  • KATAKURA Yoshio
    Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
  • YAMASAKI-YASHIKI Shino
    Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan

Bibliographic Information

Other Title
  • Adhesion mechanisms of Bifidobacterium animalis subsp. lactis JCM 10602 to dietary fiber

Search this article

Abstract

<p>Adherence of probiotics to dietary fibers present in the intestinal tract may affect adhesion to intestinal epithelial cells. The properties of the adhesion of bifidobacteria to mucin or epithelial cells have been well studied; however, adhesion of bifidobacteria to dietary fiber has not been investigated. The adhesion ratio of six Bifidobacterium strains to cellulose and chitin was examined; among the strains, Bifidobacterium animalis subsp. lactis JCM 10602 showed high adherence to both cellulose and chitin, and two strains showed high adherence to only chitin. The ratios of adhesion of B. animalis to cellulose and chitin were positively and negatively correlated with ionic strength, respectively. These data suggest that hydrophobic and electrostatic interactions are involved in the adhesion to cellulose and chitin, respectively. The adhesion ratios of the cells in the late logarithmic phase to cellulose and chitin decreased by approximately 40% and 70% of the cells in the early logarithmic phase, respectively. Furthermore, the adhesion ratio to cellulose decreased with increasing bile concentration regardless of the culture phase of the cells. On the other hand, the adhesion ratio to chitin of cells in the early logarithmic phase decreased with increasing bile concentration; however, that of cells in the late logarithmic phase increased slightly, suggesting that adhesins differ depending on the culture phase. Our results indicated the importance of considering adhesion to both dietary fibers and the intestinal mucosa when using bifidobacteria as probiotics.</p>

Journal

Citations (1)*help

See more

References(40)*help

See more

Related Projects

See more

Details 詳細情報について

Report a problem

Back to top