測域センサにより取得される歩行パターンを利用した高齢者/若年者弁別手法  [in Japanese] A Classification Method of Elderly and Young People Using Walking Pattern Obtained from a Laser Range Scanner  [in Japanese]

Access this Article

Search this Article

Abstract

我々はこれまで,測域センサで測定された各人の位置情報を基に,インタフェースロボットの応答制御を行い,挨拶などのコミュニケーションに利用する研究を進めてきた.ここでは,人の腰の高さに設置したセンサで人までの距離を時系列データとして取得し,ある時刻の人の位置を確率分布として推定する手法を用いてきた.本稿では,この手法を拡張し,測定位置を足首に変えることで,人の位置だけではなく,人属性を合わせて推定する手法を提案する.人属性推定としては,高齢者/若年者の弁別を対象に,機械学習アルゴリズムを用いて予測器を構築する.ここでは,「歩幅」「歩速」「歩行加速度」など7種類の歩行データの平均値と標準偏差を特徴量とすることで,単一の測域センサから取得した歩行データのみで,属性弁別が可能であることを示す.

Until now, we have studied a dialog control method for interface robots based on human location data measured by a laser range scanner as a human-robot interaction scheme. In this method, we have obtained distance data from the sensor at waist level to the target human as time series data, and have estimated the human location at a time as a probability distribution. This paper enhances the scheme and proposes an estimation method of human attributes in addition to their locations by measuring motion data of human legs at the time of walking. As human attributes, we focus on a classification method of elderly and young people, and construct the prediction model by using a machine learning algorithm. In this paper, we also verify that the attribute classification using walking data obtained from a single laser range scanner becomes possible by adopting seven types of features of walking data, such as strides, velocity and acceleration, for the model.

Journal

  • 情報処理学会論文誌

    情報処理学会論文誌 58(2), 375-383, 2017-02-15

Codes

  • NII Article ID (NAID)
    170000131197
  • NII NACSIS-CAT ID (NCID)
    AN00116647
  • Text Lang
    JPN
  • Article Type
    journal article
  • ISSN
    1882-7764
  • Data Source
    IPSJ 
Page Top