Surface Modification of Poly(methyl methacrylate) by Hydrogen-Plasma Exposure and Its Sputtering Characteristics by Ultraviolet Light Irradiation

抄録

<jats:p> Surface modification of poly(methyl methacrylate) (PMMA) films by hydrogen-plasma exposure has been studied in the light of sputtering resistance of polymer-based materials in plasma etching processes. Surface measurements of PMMA were performed with X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, and spectroscopic ellipsometry. It has been found that oxygen atoms are preferentially removed from the surface when a PMMA film is subjected to hydrogen-plasma exposure, with the depth of modification being about 40 nm in the case we examined. Hydrogen-plasma exposure is also found to reduce the sputtering yields of PMMA by ultraviolet light irradiation, as in the case of Ar<jats:sup>+</jats:sup> ion irradiation [S. Yoshimura et al.: J. Vac. Soc. Jpn. 56 (2013) 129]. The results suggest that PMMA films become hardened and more sputtering resistant due to the formation of a thick (i.e., 40 nm in the case of this study) amorphous carbon layer by hydrogen-plasma exposure. Hydrogen-plasma exposure is thus an effective technique to increase etching resistance of polymer films. </jats:p>

収録刊行物

被引用文献 (10)*注記

もっと見る

参考文献 (15)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ