First-principles simulation on Seebeck coefficient in silicon and silicon carbide nanosheets

Abstract

<jats:title>Abstract</jats:title> <jats:p>The Seebeck coefficients of silicon and silicon carbide for both bulk and nanosheet structures were simulated on the basis of first-principles calculation. The simulation procedure by means of the electronic band structure with periodic boundary condition is presented, and the dependences of the Seebeck coefficient on temperature and carrier concentration have been demonstrated for many kinds of n- or p-doped models. Under the assumption that the relaxation time is constant regardless of energy, the calculated Seebeck coefficients for bulk structures are mostly in accordance with the measured values quantitatively. The typical quantum-mechanical confinement can be observed for all nanosheet models in this study owing to dimensional reduction from bulk to nanosheet structure, but it is not so effective on the Seebeck coefficient. By the simulation with consideration of the energy dependence of the relaxation time, it is confirmed that the Seebeck coefficient should be significantly affected by the relaxation time in a wide range of temperature.</jats:p>

Journal

Citations (1)*help

See more

References(42)*help

See more

Related Projects

See more

Report a problem

Back to top