Electro-optic effect and photoelastic effect of feroelectric relaxors

Abstract

<jats:title>Abstract</jats:title> <jats:p>To understand the origin of the electro-optic effect (EO-effect) of ferroelectric relaxors, the relationships among the quadratic EO-coefficient, photoelastic coefficient, and electron density were elucidated. The quadratic EO-coefficient is given by the product of the photoelastic and electrostrictive coefficients. Materials consisting of heavy elements normally exhibit high refractive indices and large photoelastic effects, indicating that the photoelastic coefficient increases with electron density of materials. The photoelastic coefficient was calculated as a function of the electron density of materials. The equations derived in this study were experimentally confirmed using lanthanum-added lead–zirconate–titanate (PLZT) transparent ceramics. It was found that the origin of the EO-effect in ferroelectric relaxors was the photoelastic effect coupled with electric-field-induced strain via the piezoelectric and electrostrictive effects.</jats:p>

Journal

References(30)*help

See more

Related Projects

See more

Report a problem

Back to top