Linear-scaling first-principles molecular dynamics of complex biological systems with the Conquest code

抄録

<jats:title>Abstract</jats:title> <jats:p>The recent progress of linear-scaling or <jats:inline-formula> <jats:tex-math><?CDATA $\mathcal{O}(N)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="STAP09008if001.gif" xlink:type="simple" /> </jats:inline-formula> methods in density functional theory (DFT) is remarkable. In this paper, we show that all-atom molecular dynamics simulations of complex biological systems based on DFT are now possible using our linear-scaling DFT code C<jats:sc>onquest</jats:sc>. We first overview the calculation methods used in C<jats:sc>onquest</jats:sc> and explain the method introduced recently to realise efficient and robust first-principles molecular dynamics (FPMD) with <jats:inline-formula> <jats:tex-math><?CDATA $\mathcal{O}(N)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="STAP09008if002.gif" xlink:type="simple" /> </jats:inline-formula> DFT. Then, we show that we can perform reliable all-atom FPMD simulations of a hydrated DNA model containing about 3400 atoms. We also report that the velocity scaling method is both reliable and useful for controlling the temperature of the FPMD simulation of this system. From these results, we conclude that reliable FPMD simulations of complex biological systems are now possible with C<jats:sc>onquest</jats:sc>.</jats:p>

収録刊行物

被引用文献 (3)*注記

もっと見る

参考文献 (31)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報

問題の指摘

ページトップへ