Discrete Fenchel duality for a pair of integrally convex and separable convex functions

抄録

<jats:title>Abstract</jats:title><jats:p>Discrete Fenchel duality is one of the central issues in discrete convex analysis. The Fenchel-type min–max theorem for a pair of integer-valued M<jats:inline-formula><jats:alternatives><jats:tex-math>$$^{\natural }$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow /> <mml:mo>♮</mml:mo> </mml:msup> </mml:math></jats:alternatives></jats:inline-formula>-convex functions generalizes the min–max formulas for polymatroid intersection and valuated matroid intersection. In this paper we establish a Fenchel-type min–max formula for a pair of integer-valued integrally convex and separable convex functions. Integrally convex functions constitute a fundamental function class in discrete convex analysis, including both M<jats:inline-formula><jats:alternatives><jats:tex-math>$$^{\natural }$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow /> <mml:mo>♮</mml:mo> </mml:msup> </mml:math></jats:alternatives></jats:inline-formula>-convex functions and L<jats:inline-formula><jats:alternatives><jats:tex-math>$$^{\natural }$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow /> <mml:mo>♮</mml:mo> </mml:msup> </mml:math></jats:alternatives></jats:inline-formula>-convex functions, whereas separable convex functions are characterized as those functions which are both M<jats:inline-formula><jats:alternatives><jats:tex-math>$$^{\natural }$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow /> <mml:mo>♮</mml:mo> </mml:msup> </mml:math></jats:alternatives></jats:inline-formula>-convex and L<jats:inline-formula><jats:alternatives><jats:tex-math>$$^{\natural }$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow /> <mml:mo>♮</mml:mo> </mml:msup> </mml:math></jats:alternatives></jats:inline-formula>-convex. The theorem is proved by revealing a kind of box integrality of subgradients of an integer-valued integrally convex function. The proof is based on the Fourier–Motzkin elimination.</jats:p>

収録刊行物

被引用文献 (3)*注記

もっと見る

参考文献 (20)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ