Thermoelastic properties of MgSiO<sub>3</sub> perovskite determined by in situ X ray observations up to 30 GPa and 2000 K

抄録

<jats:p>In situ X ray experiments on MgSiO<jats:sub>3</jats:sub> perovskite at pressures of 21–29 GPa and temperatures of 300–2000 K were carried out using an MA8‐type high‐pressure apparatus, employing sintered diamond anvils, combined with synchrotron radiation. The thermal expansion at 25 GPa up to 2000 K was determined from interpolation of the P‐V‐T data obtained in the present study. The 95% confidence level was estimated by taking all possible errors into account, including statistical error and systematic error caused by uncertainty of pressure scales, etc. The thermal expansivity at 25 GPa is expressed as α<jats:sub>T,25</jats:sub> = <jats:italic>a</jats:italic><jats:sub>25</jats:sub> + <jats:italic>b</jats:italic><jats:sub>25</jats:sub>T − <jats:italic>c</jats:italic><jats:sub>25</jats:sub>T<jats:sup>2</jats:sup> with the best‐fit parameters of <jats:italic>a</jats:italic><jats:sub>25</jats:sub> = 2.11 × 10<jats:sup>−5</jats:sup> K<jats:sup>−1</jats:sup>, <jats:italic>b</jats:italic><jats:sub>25</jats:sub> = 1.80 × 10<jats:sup>−9</jats:sup> K<jats:sup>−2</jats:sup>, and <jats:italic>c</jats:italic><jats:sub>25</jats:sub> = 1.93 K. The equation of state of MgSiO<jats:sub>3</jats:sub> perovskite has been determined using our new data combined with the lower‐pressure data of <jats:italic>Wang et al.</jats:italic> [1994] and <jats:italic>Utsumi et al.</jats:italic> [1995]. The optimal set of parameters of the third‐order Birch‐Murnaghan equation of state, which is expressed as P = (3/2)K<jats:sub>T,0</jats:sub>[(V<jats:sub>T,0</jats:sub>/V)<jats:sup>7/3</jats:sup> − (V<jats:sub>T,0</jats:sub>/V)<jats:sup>5/3</jats:sup>]{1 − (3/4)(4 − K<jats:sub>T,0</jats:sub>′)[(V<jats:sub>T,0</jats:sub>/V)<jats:sup>2/3</jats:sup> − 1]}, where K<jats:sub>T,0</jats:sub> = K<jats:sub>300,0</jats:sub> + (∂K<jats:sub>T,0</jats:sub>/∂T)<jats:sub>P</jats:sub>(T − 300), K<jats:sub>T,0</jats:sub>′ = K<jats:sub>300,0</jats:sub>′, V<jats:sub>T,0</jats:sub> = V<jats:sub>0</jats:sub>exp ∫<jats:sub>300</jats:sub><jats:sup>T</jats:sup>α<jats:sub>T,0</jats:sub>dT, and α<jats:sub>T,0</jats:sub> = <jats:italic>a</jats:italic><jats:sub>0</jats:sub> + <jats:italic>b</jats:italic><jats:sub>0</jats:sub>T − <jats:italic>c</jats:italic><jats:sub>0</jats:sub>T<jats:sup>−2</jats:sup>, is K<jats:sub>300,0</jats:sub> = 261 GPa, K<jats:sub>300,0</jats:sub>′ = 4, <jats:italic>a</jats:italic><jats:sub>0</jats:sub> = 1.982 × 10<jats:sup>−5</jats:sup> K<jats:sup>−1</jats:sup>, <jats:italic>b</jats:italic><jats:sub>0</jats:sub> = 0.818 × 10<jats:sup>−8</jats:sup> K<jats:sup>−2</jats:sup>, <jats:italic>c</jats:italic><jats:sub>0</jats:sub> = 0.474 K, and (∂K<jats:sub>T,0</jats:sub>/∂T)<jats:sub>P</jats:sub> = −0.0280 GPa/K. The reliability of the result is discussed in detail.</jats:p>

収録刊行物

被引用文献 (27)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ