Partitioning of HNO<sub>3</sub> and particulate nitrate over Tokyo: Effect of vertical mixing

  • Y. Morino
    Research Center for Advanced Science and Technology University of Tokyo Tokyo Japan
  • Y. Kondo
    Research Center for Advanced Science and Technology University of Tokyo Tokyo Japan
  • N. Takegawa
    Research Center for Advanced Science and Technology University of Tokyo Tokyo Japan
  • Y. Miyazaki
    Research Center for Advanced Science and Technology University of Tokyo Tokyo Japan
  • K. Kita
    Department of Environmental Science, Graduate School of Science Ibaraki University Japan
  • Y. Komazaki
    Research Center for Advanced Science and Technology University of Tokyo Tokyo Japan
  • M. Fukuda
    Research Center for Advanced Science and Technology University of Tokyo Tokyo Japan
  • T. Miyakawa
    Research Center for Advanced Science and Technology University of Tokyo Tokyo Japan
  • N. Moteki
    Research Center for Advanced Science and Technology University of Tokyo Tokyo Japan
  • D. R. Worsnop
    Center for Aerosol and Cloud Chemistry Aerodyne Research, Inc. Billerica Massachusetts USA

抄録

<jats:p>Ground‐based measurements of gas‐phase nitric acid (HNO<jats:sub>3</jats:sub>) and particulate nitrate (NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>) were performed in Tokyo during 2003–2004. These measurements provide a comprehensive data set for investigating the diurnal and seasonal variations of gas‐phase HNO<jats:sub>3</jats:sub> and particulate NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> and the thermodynamic equilibrium of these compounds. HNO<jats:sub>3</jats:sub> and NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> have distinct diurnal and seasonal variations, especially in summer. This study shows that the thermodynamic equilibrium of HNO<jats:sub>3</jats:sub> and NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> and the production rate of total nitrate (TNO<jats:sub>3</jats:sub> = HNO<jats:sub>3</jats:sub> + NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>) are the major controlling factors affecting these seasonal and diurnal variations. A thermodynamic equilibrium model (ISORROPIA) is newly coupled with a one‐dimensional (1‐D) model to take into account the effect of vertical mixing during daytime on the partitioning of HNO<jats:sub>3</jats:sub> and NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> by constraining the TNO<jats:sub>3</jats:sub> concentrations to the observations. The 1‐D model reproduces the NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>/TNO<jats:sub>3</jats:sub> ratios observed during daytime, whereas the equilibrium model significantly underestimates these ratios. The agreement between the observed and calculated NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>/TNO<jats:sub>3</jats:sub> ratios is improved over the observed temperature range (1°–34°C) and relative humidity (18–95%) by the 1‐D model. These results suggest the importance of vertical mixing in determining HNO<jats:sub>3</jats:sub>‐NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> partitioning in the boundary layer. It is also found that the mass accommodation coefficient for HNO<jats:sub>3</jats:sub> needs to be approximately 0.1 to explain the observed HNO<jats:sub>3</jats:sub>‐NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> partitioning at the surface.</jats:p>

収録刊行物

被引用文献 (3)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ