In vitro studies on periodontal ligament cells and enamel matrix derivative

抄録

<jats:p><jats:bold>Abstract</jats:bold> The recognition that periodontal regeneration can be achieved has resulted in increased efforts focused on understanding the mechanisms and factors required for restoring periodontal tissues so that clinical outcomes of such therapies are more predictable than those currently being used. In vitro models provide an excellent procedure for providing clues as to the mechanisms that may be required for regeneration of tissues. The investigations here were targeted at determining the ability of enamel matrix derivative (EMD) to influence specific properties of periodontal ligament cells in vitro. Properties of cells examined included migration, attachment, proliferation, biosynthetic activity and mineral nodule formation. Immunoassays were done to determine whether or not EMD retained known polypeptide factors. Results demonstrated that EMD under in vitro conditions formed protein aggregates, thereby providing a unique environment for cell‐matrix interaction. Under these conditions, EMD: (a) enhanced proliferation of PDL cells, but not of epithelial cells; (b) increased total protein production by PDL cells; (c) promoted mineral nodule formation of PDL cells, as assayed by von Kossa staining; (d) had no significant effect on migration or attachment and spreading of cells within the limits of the assay systems used here. Next, EMD was screened for possible presence of specific molecules including: GM‐CSF, calbindin D, EOF, fibronectin, bFGF, γ‐interferon. IL‐1β, 2, 3, 6; IGF‐1,2; NGF, PDGF, TNF, TGFβ. With immunoassays used, none of these molecules were identified in EMD. These in vitro studies support the concept that EMD can act as a positive matrix for cells at a regenerative site.</jats:p>

収録刊行物

被引用文献 (64)*注記

もっと見る

キーワード

詳細情報

問題の指摘

ページトップへ