Dynamic simulation of sheared suspensions. I. General method

  • G. Bossis
    Laboratoire de Physique de la Matière Condensèe, Universitè de Nice, Parc Valrose, 06034 Nice Cedex, France
  • John F. Brady
    Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

抄録

<jats:p>A general method is presented for simulating the dynamical behavior of a suspension of particles which interact through both hydrodynamic and nonhydrodynamic forces. In the molecular-dynamics-like simulation there are two different procedures for computing the interactions among particles: a pairwise additivity of forces and a pairwise additivity of velocities. The pairwise additivity of forces is the preferred method as it preserves the hydrodynamic lubrication forces which prevent particles from overlapping. The two methods are compared in a simulation of a monolayer of identical rigid non-Brownian spherical particles in a simple shear flow. Periodic boundary conditions are used to model an infinite suspension. Both methods predict the presence of a shear induced anisotropic local structure whose form and strength depend on the concentration of particles, the nonhydrodynamic forces, and the shear rate. Increasing the particle concentration up to near the maximum fraction that can still flow results in a transition to a layered structure in which planes of particles slide relative to one another. The anisotropic local structure and transition to a layered structure predict a non-Newtonian suspension rheology.</jats:p>

収録刊行物

被引用文献 (7)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ