Kinetics of surface reactions in very low-pressure chemical vapor deposition of Si from SiH4

  • S. M. Gates
    IBM T. J. Watson Research Center, Yorktown Heights, New York 10598
  • S. K. Kulkarni
    IBM E. Fishkill Facility, Hopewell Junction, New York 12533

抄録

<jats:p>A steady-state kinetic model for the chemical vapor deposition (CVD) growth of Si films from SiH4 on Si(100) is presented. The only adsorbing species is SiH4 (absence of homogeneous SiH4 dissociation is presumed). Model predictions of surface hydrogen coverage and Si film growth rate as a function of growth temperature ( T ) are compared with literature values for these quantities. The rate of each reaction step is calculated at selected T. Adsorption of SiH4 and decomposition of SiH3 control the growth rate in the high T limit. In the low T limit, SiH4 adsorption is slowest but is not a simple rate determining step. The SiH4 adsorption rate is controlled by the rate of H2 desorption from two surface SiH species, producing dangling bonds.</jats:p>

収録刊行物

被引用文献 (9)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ