Ballooning instabilities in tokamaks with sheared toroidal flows

  • F. L. Waelbroeck
    Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543
  • L. Chen
    Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543

抄録

<jats:p>The stability of ballooning modes in the presence of sheared toroidal flows is investigated. The eigenmodes are shown to be related by a Fourier transformation to the nonexponentially growing Floquet solutions found by Cooper [Plasma Phys. Controlled Fusion 30, 1805 (1988)]. It is further shown that the problem cannot be reduced further than to a two-dimensional partial differential equation. Next, the generalized ballooning equation is solved analytically for a circular tokamak equilibrium with sonic flows, but with a small rotation shear compared to the sound speed. With this ordering, the centrifugal forces are comparable to the pressure gradient forces driving the instability, but coupling of the mode with the sound wave is avoided. A new stability criterion is derived that explicitly demonstrates that flow shear is stabilizing at constant centrifugal force gradient.</jats:p>

収録刊行物

被引用文献 (4)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ