SPRY2 Is an Inhibitor of the Ras/Extracellular Signal-Regulated Kinase Pathway in Melanocytes and Melanoma Cells with Wild-Type <b> <i>BRAF</i> </b> but Not with the V599E Mutant

  • Dimitra Tsavachidou
    1Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania, and
  • Mathew L. Coleman
    1Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania, and
  • Galene Athanasiadis
    1Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania, and
  • Shuixing Li
    1Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania, and
  • Jonathan D. Licht
    2Mount Sinai School of Medicine, New York, New York
  • Michael F. Olson
    1Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania, and
  • Barbara L. Weber
    1Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania, and

抄録

<jats:title>Abstract</jats:title> <jats:p>BRAF mutations result in constitutively active BRAF kinase activity and increased extracellular signal-regulated kinase (ERK) signaling and cell proliferation. Initial studies have shown that BRAF mutations occur at a high frequency in melanocytic nevi and metastatic lesions, but recent data have revealed much lower incidence of these mutations in early-stage melanoma, implying that other factors may contribute to melanoma pathogenesis in a wild-type (WT) BRAF context. To identify such contributing factors, we used microarray gene expression profiling to screen for differences in gene expression between a panel of melanocytic and melanoma cell lines with WT BRAF and a group of melanoma cell lines with the V599E BRAF mutation. We found that SPRY2, an inhibitor homologous to SPRY4, which was previously shown to suppress Ras/ERK signaling via direct binding to Raf-1, had reduced expression in WT BRAF cells. Using small interfering RNA-mediated SPRY2 knockdown, we showed that SPRY2 acts as an inhibitor of ERK signaling in melanocytes and WT BRAF melanoma cells, but not in cell lines with the V599E mutation. We also show that SPRY2 and SPRY4 directly bind WT BRAF but not the V599E and other exon 15 BRAF mutants. These data suggest that SPRY2, an inhibitor of ERK signaling, may be bypassed in melanoma cells either by down-regulation of its expression in WT BRAF cells, or by the presence of the BRAF mutation.</jats:p>

収録刊行物

  • Cancer Research

    Cancer Research 64 (16), 5556-5559, 2004-08-15

    American Association for Cancer Research (AACR)

被引用文献 (3)*注記

もっと見る

キーワード

詳細情報 詳細情報について

問題の指摘

ページトップへ