抄録

<jats:p>Let us consider the following infinite game between two players, Empty and Nonempty. We are given a large set <jats:italic>S</jats:italic>. Empty opens the game by choosing a large subset <jats:italic>S</jats:italic><jats:sub>0</jats:sub> of <jats:italic>S</jats:italic>; then Nonempty chooses a large set <jats:italic>S</jats:italic><jats:sub>1</jats:sub> ⊆ <jats:italic>S</jats:italic><jats:sub>0</jats:sub>; then Empty chooses large <jats:italic>S</jats:italic><jats:sub>2</jats:sub> ⊆ <jats:italic>S</jats:italic>, etc. The game is over after ω moves. If ⋂<jats:sub arrange="stack">n=0</jats:sub><jats:sup arrange="stack">x</jats:sup><jats:italic>S<jats:sub>n</jats:sub></jats:italic> is empty then Empty wins, and if ⋂<jats:sub arrange="stack">n=0</jats:sub><jats:sup arrange="stack">∞</jats:sup><jats:italic>S<jats:sub>n</jats:sub></jats:italic> is nonempty then Nonempty wins.</jats:p><jats:p>If “large” means “infinite”, then Empty can beat Nonempty rather easily: he chooses So countable, <jats:italic>S</jats:italic><jats:sub>0</jats:sub> = {<jats:italic>a</jats:italic><jats:sub>0</jats:sub>, <jats:italic>a</jats:italic><jats:sub>1</jats:sub>,…, <jats:italic>a<jats:sub>n</jats:sub></jats:italic>,…}, and then he chooses <jats:italic>S</jats:italic><jats:sub>2</jats:sub> such that <jats:italic>a</jats:italic><jats:sub>0</jats:sub> ∉ <jats:italic>S</jats:italic><jats:sub>2</jats:sub>, <jats:italic>S</jats:italic><jats:sub>4</jats:sub> such that <jats:italic>a</jats:italic><jats:sub>1</jats:sub>, ∉ <jats:italic>S</jats:italic><jats:sub>4</jats:sub> and so on.</jats:p><jats:p>Next we assume that <jats:italic>S</jats:italic> is a set of uncountable cardinality, and that “large” means “of cardinality ∣<jats:italic>S</jats:italic>∣”. Then still Empty can win, but his winning strategy is somewhat more sophisticated: Let us identify <jats:italic>S</jats:italic> with a cardinal number κ. Thus each subset of <jats:italic>S</jats:italic> of size κ is a set of ordinals below κ. For each <jats:italic>X</jats:italic> ⊆ κ of size κ, let <jats:italic>fx</jats:italic> be the unique order-preserving mapping of <jats:italic>X</jats:italic> onto κ, and let <jats:italic>F(X)</jats:italic> = {<jats:italic>x</jats:italic> ϵ <jats:italic>X</jats:italic>: <jats:italic>f(x)</jats:italic> is a successor ordinal}. Empty's strategy is to play <jats:italic>S</jats:italic><jats:sub>0</jats:sub> = <jats:italic>F(K)</jats:italic>, and when Nonempty plays <jats:italic>S</jats:italic><jats:sub>2<jats:italic>k</jats:italic> − 1</jats:sub>, let <jats:italic>S</jats:italic><jats:sub>2<jats:italic>k</jats:italic></jats:sub> = <jats:italic>F(S<jats:sub>2k − 1</jats:sub></jats:italic>).</jats:p>

収録刊行物

被引用文献 (2)*注記

もっと見る

キーワード

詳細情報 詳細情報について

問題の指摘

ページトップへ