Cellular Hypertrophy and Calcification of Embryonal Carcinoma-Derived Chondrogenic Cell Line ATDC5 In Vitro

  • Chisa Shukunami
    Department of Biochemistry, Osaka University Faculty of Dentistry, Osaka, Japan
  • Kiyoto Ishizeki
    Department of Oral Anatomy, School of Dentistry, Iwate Medical University, Morioka, Japan
  • Tadao Atsumi
    Laboratory of Molecular Oncology, Tsukuba Life Science Center, The Institute of Physical and Chemical Research, Tsukuba, Ibaragi, Japan
  • Yoshiyuki Ohta
    Department of Biochemistry, Osaka University Faculty of Dentistry, Osaka, Japan
  • Fujio Suzuki
    Department of Biochemistry, Osaka University Faculty of Dentistry, Osaka, Japan
  • Yuji Hiraki
    Department of Biochemistry, Osaka University Faculty of Dentistry, Osaka, Japan

抄録

<jats:title>Abstract</jats:title> <jats:p>During the process of endochondral bone formation, proliferating chondrocytes give rise to hypertrophic cells, which then deposit a mineralized matrix to form calcified cartilage prior to replacement by bone. Previously, we reported that a clonal cell line, ATDC5, undergoes efficient chondrogenic differentiation through a cellular condensation stage. Here we report that the differentiated ATDC5 cells became hypertrophic at the center of cartilage nodules, when the cells ceased to grow. Formation of hypertrophic chondrocytes took place in association with type X collagen gene expression and a dramatic elevation of alkaline phosphate (ALPase) activity. After 5 weeks of culture, mineralization of the culture could be discerned as Alizarin red-positive spots, which spread throughout the nodules even in the absence of β-glycerophosphate. Electron microscopy and electron probe microanalysis revealed that calcification was first initiated at matrix vesicles in the territorial matrix and that it advanced progressively along the collagen fibers in a manner similar to that which occurs in vivo. The infrared spectrum of the mineralized nodules indicated two absorption doublets around 1030 cm−1 and 600 cm−1, which are characteristic of apatitic mineral. Calcifying cultures of ATDC5 cells retained responsiveness to parathyroid hormone (PTH): PTH markedly inhibited elevation of ALPase activity and calcification in the culture in a dose-dependent manner. Thus, we demonstrated that ATDC5 cells keep track of the multistep differentiation process encompassing the stages from mesenchymal condensation to calcification in vitro. ATDC5 cells provide an excellent model to study the molecular mechanism underlying regulation of cartilage differentiation during endochondral bone formation.</jats:p>

収録刊行物

被引用文献 (51)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ