Molecular Mechanism of the Inhibitory Effect of Aldosterone on Endothelial NO Synthase Activity

  • Daisuke Nagata
    From the Division of Endocrinology (D.N., K.S., T.T., T.U., A.S., M.N.), National Hospital Organization Kyoto Medical Center, Research Institute, Kyoto, Japan; Department of Internal Medicine (M.T., Y.H.), Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
  • Masao Takahashi
    From the Division of Endocrinology (D.N., K.S., T.T., T.U., A.S., M.N.), National Hospital Organization Kyoto Medical Center, Research Institute, Kyoto, Japan; Department of Internal Medicine (M.T., Y.H.), Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
  • Kuniko Sawai
    From the Division of Endocrinology (D.N., K.S., T.T., T.U., A.S., M.N.), National Hospital Organization Kyoto Medical Center, Research Institute, Kyoto, Japan; Department of Internal Medicine (M.T., Y.H.), Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
  • Tetsuya Tagami
    From the Division of Endocrinology (D.N., K.S., T.T., T.U., A.S., M.N.), National Hospital Organization Kyoto Medical Center, Research Institute, Kyoto, Japan; Department of Internal Medicine (M.T., Y.H.), Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
  • Takeshi Usui
    From the Division of Endocrinology (D.N., K.S., T.T., T.U., A.S., M.N.), National Hospital Organization Kyoto Medical Center, Research Institute, Kyoto, Japan; Department of Internal Medicine (M.T., Y.H.), Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
  • Akira Shimatsu
    From the Division of Endocrinology (D.N., K.S., T.T., T.U., A.S., M.N.), National Hospital Organization Kyoto Medical Center, Research Institute, Kyoto, Japan; Department of Internal Medicine (M.T., Y.H.), Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
  • Yasunobu Hirata
    From the Division of Endocrinology (D.N., K.S., T.T., T.U., A.S., M.N.), National Hospital Organization Kyoto Medical Center, Research Institute, Kyoto, Japan; Department of Internal Medicine (M.T., Y.H.), Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
  • Mitsuhide Naruse
    From the Division of Endocrinology (D.N., K.S., T.T., T.U., A.S., M.N.), National Hospital Organization Kyoto Medical Center, Research Institute, Kyoto, Japan; Department of Internal Medicine (M.T., Y.H.), Graduate School of Medicine, University of Tokyo, Tokyo, Japan.

Abstract

<jats:p> Although the proinflammatory and profibrotic actions of aldosterone (Aldo) on the vasculature have been reported, the effects and molecular mechanisms of Aldo on endothelial function are yet to be determined. We investigated how Aldo regulates endothelial NO synthase (eNOS) function in human umbilical vein endothelial cells (HUVECs). HUVECs were incubated for 16 hours with Aldo 10 <jats:sup>−7</jats:sup> mol/L. The concentration of reactive oxygen species was estimated by measuring 2′,7′-dichlorodihydrofluorescein diacetate chemiluminescence. Signal transduction was estimated by Western immunoblots. Real-time RT-PCR was performed to measure expression of transcripts of endogenous GTP cyclohydrolase-1 and components of reduced nicotinamide-adenine dinucleotide phosphate oxidase. To eliminate the possible effect of the glucocorticoid receptor (GR) and to emphasize the role of mineralocorticoid receptor, we used GR small interfering RNA and knocked down GR expression in several experiments. NO output was estimated by intracellular cGMP concentration. Reactive oxygen species production increased significantly in Aldo-treated HUVECs but was abolished by pretreatment with eplerenone. Transcripts of p47 <jats:sup>phox</jats:sup> were increased by Aldo treatment. Vascular endothelial growth factor–induced eNOS Ser 1177 but not Akt Ser 473 phosphorylation levels were reduced significantly by pretreatment with Aldo. Pretreatment with either eplerenone or okadaic acid restored phosphorylation levels of eNOS Ser 1177 in Aldo-treated cells, suggesting that protein phosphatase 2A was upregulated by Aldo via mineralocorticoid receptor. The decrease in NO output caused by Aldo pretreatment was reversed significantly by 5,6,7,8-tetrahydrobiopterin, GTP cyclohydrolase-1 overexpression, or p47 <jats:sup>phox</jats:sup> knockdown. These results suggest that Aldo inhibits eNOS function through bimodal mechanisms of 5,6,7,8-tetrahydrobiopterin deficiency and protein phosphatase 2A activation. </jats:p>

Journal

  • Hypertension

    Hypertension 48 (1), 165-171, 2006-07

    Ovid Technologies (Wolters Kluwer Health)

Citations (16)*help

See more

Related Projects

See more

Details 詳細情報について

Report a problem

Back to top