Practical approaches to fatigue life distribution analysis for reliability-based fatigue-proof design

Search this Article

Author

    • 石川, 英利 イシカワ, ヒデトシ

Bibliographic Information

Title

Practical approaches to fatigue life distribution analysis for reliability-based fatigue-proof design

Author

石川, 英利

Author(Another name)

イシカワ, ヒデトシ

University

大阪府立大学

Types of degree

工学博士

Grant ID

乙第662号

Degree year

1991-07-20

Note and Description

博士論文

Table of Contents

  1. Contents / p6 (0006.jp2)
  2. Abstract / p1 (0003.jp2)
  3. Acknowledgement / p5 (0005.jp2)
  4. Contents / p6 (0006.jp2)
  5. 1.Introduction / p1 (0008.jp2)
  6. 1.1 Importance of Structural Safety and Reliability / p1 (0008.jp2)
  7. 1.2 Analysis of Engineering Uncertainties / p3 (0009.jp2)
  8. 1.3 Scope of Present Dissertation / p6 (0011.jp2)
  9. 2.Potential Applicability of Mathematical Statistics in Stochastic Modelling of Fatigue Failure Phenomena / p12 (0014.jp2)
  10. 2.1 Introduction / p12 (0014.jp2)
  11. 2.2 Major Failure Models and Associated Distributions / p13 (0014.jp2)
  12. 2.3 Wide Applicability of Weibull Distribution for Fatigue Life Scatters / p19 (0017.jp2)
  13. 2.4 Stochastic Fatigue Crack Growth Model / p25 (0020.jp2)
  14. 2.5 Importance of TTFF Concept / p36 (0026.jp2)
  15. 2.6 Design Safety Factor Based upon TTFF / p44 (0030.jp2)
  16. 2.7 Concluding Remarks / p53 (0034.jp2)
  17. 3.Practical Approaches to Fatigue-Proof Design in Structural Components with the Aid of Reliability-Based Scatter Factors / p54 (0035.jp2)
  18. 3.1 Introduction / p54 (0035.jp2)
  19. 3.2 Statistical Scatter Factor with a Known Weibull Shape Parameter / p56 (0036.jp2)
  20. 3.3 Statistical Scatter Factor with Unknown Shape and Scale Parameters / p64 (0040.jp2)
  21. 3.4 Concluding Remarks / p79 (0047.jp2)
  22. 4. Fatigue Behavior and Reliability of Quasi-Isotropic Carbon/Epoxy Laminates / p80 (0048.jp2)
  23. 4.1 Introduction / p80 (0048.jp2)
  24. 4.2 Tensile Fatigue Testing Procedure / p80 (0048.jp2)
  25. 4.3 Fatigue Failure Mechanism of [±45/0/90]s and [0/± 45/90]s Laminates / p81 (0048.jp2)
  26. 4.4 Three-Parameter Weibull Model as Fatigue Life Distribution / p85 (0050.jp2)
  27. 4.5 Reliability-Based Design by Use of Data Pooling Technique / p86 (0051.jp2)
  28. 4.6 Concluding Remarks / p89 (0052.jp2)
  29. 5.Fatigue Design and Reliability Analysis of CFRP Composites / p92 (0054.jp2)
  30. 5.1 Introduction / p92 (0054.jp2)
  31. 5.2 Rotating Bending Fatigue Testing Procedure / p93 (0054.jp2)
  32. 5.3 Fatigue Failure Mechanism of Unidirectional Laminates / p94 (0055.jp2)
  33. 5.4 Statistical Properties of Unidirectional Laminates / p95 (0055.jp2)
  34. 5.5 Reliability-Based Design Based upon TTFF Concept / p100 (0058.jp2)
  35. 5.6 Concluding Remarks / p101 (0058.jp2)
  36. 6.Determination of Optimum Sample Size in Reliability-Based Fatigue-Proof Design / p105 (0060.jp2)
  37. 6.1 Introduction / p105 (0060.jp2)
  38. 6.2 Failure Probability as a Statistic and Its Distribution Properties / p106 (0061.jp2)
  39. 6.3 Effect of Sample Size on Estimation of Failure Probability / p108 (0062.jp2)
  40. 6.4 Comparison of Distribution Function of Statistical Failure Probability between Weibull and Log-normal Failure Models / p110 (0063.jp2)
  41. 6.5 Design Principle in Consideration of Reliability of Estimation of Failure Probability / p113 (0064.jp2)
  42. 6.6 Determination of Optimum Sample Size of Fatigue Experiment to Satisfy Prescribed Confidence Level / p117 (0066.jp2)
  43. 6.7 Concluding Remarks / p118 (0067.jp2)
  44. 7.Some Aspects of Structural Reliability Assurance for Random Excitation Processes / p120 (0068.jp2)
  45. 7.1 Introduction / p120 (0068.jp2)
  46. 7.2 Effects of Random Excitation Processes / p121 (0068.jp2)
  47. 7.3 Topics Associated with Cumulative Effect / p123 (0069.jp2)
  48. 7.4 Topics Associated with Semicumulative Effect / p127 (0071.jp2)
  49. 7.5 Topics Associated with Noncumulative Effect / p128 (0072.jp2)
  50. 7.6 Practical Application of Stochastic Fatigue Crack Growth Model Based upon Markov Approximation Method / p132 (0074.jp2)
  51. 7.7 Concluding Remarks / p150 (0083.jp2)
  52. 8.Effect of Stress Ratio on Crack Propagation Life Distribution under Random Loading / p152 (0084.jp2)
  53. 8.1 Introduction / p152 (0084.jp2)
  54. 8.2 Crack Propagation Life Distribution Based upon Paris-Erdogan's Crack Growth Law / p153 (0084.jp2)
  55. 8.3 Crack Propagation Life Distribution in Consideration of Stress Ratio / p155 (0085.jp2)
  56. 8.4 Generation of Stationary Gaussian Random Loading Process / p156 (0086.jp2)
  57. 8.5 Numerical Examples and Discussions / p159 (0087.jp2)
  58. 8.6 Concluding Remarks / p164 (0090.jp2)
  59. 9.Effect of Retardation on Crack Propagation Life Distribution under Random Loading / p165 (0090.jp2)
  60. 9.1 Introduction / p165 (0090.jp2)
  61. 9.2 Technical Background of Fracture Mechanics for Fatigue Crack Growth Law / p166 (0091.jp2)
  62. 9.3 Program Development for Simulation of Fatigue Crack Growth in Consideration of Retardation / p179 (0097.jp2)
  63. 9.4 Numerical Computations and Discussions / p186 (0101.jp2)
  64. 9.5 Concluding Remarks / p191 (0103.jp2)
  65. 10.Conclusions / p193 (0104.jp2)
  66. References / p204 (0110.jp2)
6access

Codes

  • NII Article ID (NAID)
    500000079562
  • NII Author ID (NRID)
    • 8000000079766
  • DOI(NDL)
  • NDLBibID
    • 000000243876
  • Source
    • NDL ONLINE
    • NDL Digital Collections
Page Top