A study of behavioural semantics for concurrent calculi

Search this Article

Author

    • 吉田, 展子 ヨシダ, ノブコ

Bibliographic Information

Title

A study of behavioural semantics for concurrent calculi

Author

吉田, 展子

Author(Another name)

ヨシダ, ノブコ

University

慶應義塾大学

Types of degree

博士 (工学)

Grant ID

甲第1496号

Degree year

1996-09-21

Note and Description

博士論文

Table of Contents

  1. 論文目録 / (0001.jp2)
  2. Contents / p1 (0006.jp2)
  3. Chapter1.Introduction / p5 (0010.jp2)
  4. 1.1.Background / p5 (0010.jp2)
  5. 1.2.Significance of Reduction-Based Semantics / p8 (0013.jp2)
  6. 1.3.Summary of this Thesis / p9 (0014.jp2)
  7. Part I:Foundations of Reduction Based Semantics / p13 (0018.jp2)
  8. Chapter2.ν-calculus and its Bisimilarities / p14 (0019.jp2)
  9. 2.1.ν-calculus / p14 (0019.jp2)
  10. 2.2.Two Notions of Labeled Transitions and Bisimilarities / p17 (0022.jp2)
  11. 2.3.ν-Theories / p20 (0025.jp2)
  12. Chapter3.Foundations of Reduction-Based Semantics / p24 (0029.jp2)
  13. 3.1.Reduction Closure Property / p24 (0029.jp2)
  14. 3.2.Insensitivity and Sound Theories / p29 (0034.jp2)
  15. 3.3.Generic Observables / p31 (0036.jp2)
  16. 3.4.The Maximal Theory / p34 (0039.jp2)
  17. Chapter4.Relationship with Bisimilarities(1):Weak Semantics / p39 (0044.jp2)
  18. 4.1.[数式] and Equators / p40 (0045.jp2)
  19. 4.2.Restoration of ≈a / p42 (0047.jp2)
  20. 4.3.Restoration of ≈s / p49 (0054.jp2)
  21. Chapter5.Relationship with Bisimilarities(2):Strong Semantics / p54 (0059.jp2)
  22. 5.1.Basic Construction of Strong Theories / p54 (0059.jp2)
  23. 5.2.Restoration of ∼a / p55 (0060.jp2)
  24. 5.3.Restoration of ∼s / p60 (0065.jp2)
  25. Part II:Applications / p62 (0067.jp2)
  26. Chapter6.Application(1):Typed Monadic π-calculus / p63 (0068.jp2)
  27. 6.1.Introduction / p63 (0068.jp2)
  28. 6.2.Graph Types / p67 (0072.jp2)
  29. 6.3.The Typing System and its Basic Properties / p73 (0078.jp2)
  30. Chapter7.Behavioural Equality over Typed π-terms / p81 (0086.jp2)
  31. 7.1.Behavioural Equality over Typed π-terms / p82 (0087.jp2)
  32. 7.2.Properties of Reduction-Closed Equalities / p87 (0092.jp2)
  33. Chapter8.Full Abstraction Result / p92 (0097.jp2)
  34. 8.1.Fully Abstract Encoding for Polyadic π-calculus:Adequacy / p93 (0098.jp2)
  35. 8.2.Fully Abstract Encoding for Polyadic π-calculus:Completeness / p97 (0102.jp2)
  36. 8.3.Full Abstraction Results of Further Encodings / p105 (0110.jp2)
  37. Chapter9.Application(2):Functional Calculi / p109 (0114.jp2)
  38. 9.1.λ-calculus / p110 (0115.jp2)
  39. 9.2.λf-calculus(1):Basic Definition / p113 (0118.jp2)
  40. 9.3.λf-calculus(2):Reduction-Based Theory / p118 (0123.jp2)
  41. Chapter10.Application(3):Other Concurrency Formalisms / p122 (0127.jp2)
  42. 10.1.CCS / p123 (0128.jp2)
  43. 10.2.Graph Notation for Concurrent Combinators(1):Basic Definition / p126 (0131.jp2)
  44. 10.3.Graph Notation for Concurrent Combinators(2):Reduction-Based Semantics / p134 (0139.jp2)
  45. Chapter11.Conclusion / p139 (0144.jp2)
  46. 11.1.Related Works(1):Reduction-Based Theories / p140 (0145.jp2)
  47. 11.2.Related Works(2):Other Formalisms / p142 (0147.jp2)
  48. 11.3.Further Issues on Reduction-Based Theories / p145 (0150.jp2)
  49. Bibliography / p148 (0153.jp2)
  50. Appendix A.Proofs and Definitions / p153 (0158.jp2)
  51. 1.1.Proof of Proposition 2.2.7 / p153 (0158.jp2)
  52. 1.2.Proof of Lemma 6.3.12 / p155 (0160.jp2)
  53. 1.3.Proof of Subject Reduction Theorem / p159 (0164.jp2)
  54. 1.4.Proof for Lemma 7.1.9 / p161 (0166.jp2)
  55. 1.5.Proof of Proposition 7.1.12 / p162 (0167.jp2)
  56. 1.6.Typing System and Labeled Transition Relation in Polyadic π-calculus / p164 (0169.jp2)
  57. Abstract / p3 (0008.jp2)
7access

Codes

  • NII Article ID (NAID)
    500000139310
  • NII Author ID (NRID)
    • 8000000139581
  • DOI(NDL)
  • Text Lang
    • eng
  • NDLBibID
    • 000000303624
  • Source
    • NDL ONLINE
    • NDL Digital Collections
Page Top