外来性両生類におけるカエルツボカビ(Batrachochytrium dendrobatidis)の疫学および臨床学的研究 Epidemiological and Clinical Studies of the Amphibian Chytrid Fungus (Batrachochytrium dendrobatidis) in Exotic Amphibians
この論文にアクセスする
著者
書誌事項
- タイトル
-
外来性両生類におけるカエルツボカビ(Batrachochytrium dendrobatidis)の疫学および臨床学的研究
- タイトル別名
-
Epidemiological and Clinical Studies of the Amphibian Chytrid Fungus (Batrachochytrium dendrobatidis) in Exotic Amphibians
- 著者名
-
田向, 健一
- 学位授与大学
-
麻布大学
- 取得学位
-
博士(獣医学)
- 学位授与番号
-
乙第431号
- 学位授与年月日
-
2014-07-28
注記・抄録
近年の経済のグローバル化と輸送手段の変革により、物流は広域、大規模、迅速化された。その結果、生きた動物の人為的な移動、商取引により、H5N1鳥インフルエンザやコイヘルペスウイルスのような新興病原体が、急速かつ広域に拡散され、汎発流行の大きな原因となっている。これらは、ときに野生生物個体群に壊滅的な影響をもたらし、また、甚大な経済的損失を生じる。 Batrachochytrium dendrobatidisは1999年ツボカビ門ツボカビ科に新種記載された真菌である。両生類のみに感染しツボカビ症を引き起こし、少なくとも現在までに20科200種以上の両生類の生息数を減少、絶滅させたことが判明している。海外では、病原体としての特性に関する研究はもとより、生態系への影響の評価が国際自然保護連合を中心に行われ、これを受けて国際獣疫事務局は国際的な監視を必要とする病原体に指定した。 我が国では、国内初、同時にアジア初のB. dendrobatidisが2006年両生類愛好家が飼育していた外来性両生類の不審死事例から見出された。日本には66種(内訳: 無尾目39種、有尾目: 27種)の在来両生類が生息しており、環境省が作成した2012年のレッドリストでは、そのうち絶滅危惧種が42種、全体の67%にも及ぶ。ペットとして飼育される両生類は野外に放逐されることがあり、野生の両生類に感染拡大する可能性も指摘されている。そのため、日本固有の両生類をB. dendrobatidisの脅威から守るためには、流通する両生類におけるB. dendrobatidis感染状況の把握、流通個体を含めた飼育下両生類における適切なB. dendrobatidis管理方法の確立が欠かせない。しかしながら、わが国に輸入される外来性両生類のB. dendrobatidis感染実態を調査した報告はなく、一般家庭で飼育される両生類における保菌状況も把握されていない。さらに、多種多様の両生類に適用可能な除菌法および治療法の確立も不十分である。そこで、本研究では、流通する両生類のB. dendrobatidis感染実態を明らかにし、併せて新たな除菌法・治療法を確立し、飼育下両生類を感染源とするB. dendrobatidisの在来種への脅威を軽減することを目的とする。本研究は以下の3つの章より成っている。第1章 日本国内で飼育もしくは国際商取引されている両生類のBatrachochytrium dendrobatidis : 保菌率とそのITS haplotype解析 第1章では、国内飼育下および輸入された外来性両生類におけるB. dendrobatidisの保菌状況を明らかにすることを目的とした。2008-2011年の間に両生類820匹より体表スワブを採取し、nested PCR法でB. dendrobatidis遺伝子を検出、塩基配列を解析した。820匹中76匹(9.3%)からB. dendrobatidisが検出された。輸入両生類の保菌率は10.3%(58/561)であり、日本国内で長期飼育ないし商業的に繁殖された両生類の保菌率は6.9%(18/259)であった。輸入動物群における高い保菌率は、B. dendrobatidis暴露機会の増加、輸送時の過密や輸送ストレスなどによる易感染性の上昇によるものと考えた。以上より、ペットとして輸入される外来性両生類の商取引を介して現在もB. dendrobatidisが日本国内に侵入していること、また、すでに日本国内で飼育されているペット用両生類には、B. dendrobatidisの不顕性感染個体が多く含まれていることを明らかにした。 陽性サンプル76のPCR産物の塩基配列解析によって、B. dendrobatidisは11のhaplotypeに型別された。そして輸入両生類の52/58(90%)がhaplotype A(DDBJ accession number AB435211)であった。haplotype Aは、海外においてもっとも広く分布している高病原性系統(Global pandemic lineage: Bd-GPL)である。また、日本国内で繁殖されているアフリカツメガエル(Xenopus leavis)から、4つのhaplotype(A, C, Q, V)が検出され、本研究で対象とした両生類のうち最も多くのhaplotypeを保菌しており、本種がB. dendrobatidisの主要なキャリアとする仮説を支持した。また、調査した国の中で、日本において、最も多くの5つの haplotypeが確認されるとともに、その割合は他国と異なっていた。他国ではhaplotype Aが90%と多く、日本では、haplotype C 44%、A 28%、V 17%、Q 5.6%、Bd28 5.6%と様々な割合で検出され、国内の飼育下外来性両生類では、B. dendrobatidisの多様性が高いことが明らかにされた。この状況は、流通過程や飼育施設内で、在来両生類を含めた多種類の両生類との間接的あるいは直接的接触により形成されたものと考えられた。さらに、日本を含むアジアとその他の国におけるhaplotype数が、前者は9 haplotype(A, C, E, L, Q, V, Bd28, Bd38, Bd41)、後者はわずか3 haplotype(A, Bd29, Bd43)と、アジアにおいて高い遺伝子的多様性がみられ、Gokaらが提唱するB. dendrobatidisアジア起源説を支持する結果となった。第2章 自然発生性ツボカビ症に対するイトラコナゾールを用いた治療方法の検討 第1章で、ペットとして流通する外来性両生類が、一定の割合(10.3%)でB. dendrobatidisを保菌し、さらに、ツボカビ症を発症している個体や大量死も確認された。B. dendrobatidisは、直接接触のみならず、飼育水を介して、容易に水平伝播するとともに、広く拡散し、感染源となるため、有効な除菌法や治療法の確立が欠かせない。特にツボカビ症を発症した両生類では、莫大な数の遊走子が生産、放出されることから、感染拡大を防ぐために治療法の確立は最優先で取り組む課題である。 そこで、第2章では、自然発生性ツボカビ症の両生類を対象として、効果的、簡便かつ安全な治療法の確立を目的とした。供試動物は12匹(内訳は無尾目4種11匹、有尾目1種1匹)で、臨床症状、脱皮皮直接鏡検によるB. dendrobatidis確認およびnested PCR法によりツボカビ症と確定診断された。治療プロトコルは、トリアゾール系抗真菌薬イトラコナゾール0.01%水溶液に、1回10分間、1日おきに計7回の薬浴とした。除菌および治療効果は、臨床症状、直接鏡検法とnested PCR法の3つで、治療中、治療直後および治療後(20-57日,平均34日)に判定した。その結果、12匹中11匹の治療と除菌に成功した。さらに12ヵ月を経過しても再発は認められなかった。過去報告例のない有尾目のツボカビ症でも効果が得られたことから、共同研究者の宇根有美らはこの治療プロトコルを用いて、我が国の特別天然記念物であるオオサンショウウオ(Andrias japonicus)のB. dendrobatidisの除菌に成功した。以上より本研究によって確立した治療法は、有尾目にも適応でき、ツボカビ症に対して安全かつ効果的であると判断した。第3章 Batrachochytrium dendrobatidis除菌のための銅イオン (Cu2+) の有効性の検討 : Cu2+によるアフリカツメガエル (Xenopus laevis) への影響に関する評価 第2章で、無尾目および有尾目のツボカビ症の治療法の確立に成功した。この研究では、高価ではあるが、高い除菌効果が期待できる人体用の薬剤を、動物を小型の個別容器にいれ、確実に薬浴するとともに、薬剤量を最小量にすることで、低コスト化を図った。これは、地上性の両生類を供試動物とすることで実現した。しかし、完全水棲で、かつ多頭飼育されるアフリカツメガエル (Xenopus laevis)などには、作業の煩雑さはもとより、費用の面で適用できない。アフリカツメガエルは、生物学、遺伝学、発生学などの分野の研究には欠かせない重要な実験動物で、世界中で広く用いられている。その一方で、アフリカツメガエルはB. dendrobatidisの自然宿主で、かつ重要なキャリアとされ、この種を通じて世界的にB. dendrobatidisが拡散したとする報告がある。また、実際、第1章の結果のようにアフリカツメガエルの26.9%からB. dendrobatidisが検出された。しかし、国内外で本種のB. dendrobatidis除菌法は確立されていない。 そこで、第3章では、アフリカツメガエルのB. dendrobatidisに対して安全かつ容易、安価で、効果的な除菌方法を検討することとして、銅イオン(Cu2+)のもつ抗菌効果に注目した。Cu2+は、水産分野において、細菌・真菌性疾患の防除に広く利用されており、特に魚卵に発生するミズカビ (Sploregnia属菌)に対してCu2+ 0.006 ppm処置で効果があるとの報告がある。また、共同研究者の宇根有美らは、B. dendrobatidisの培養株を使って、in vitroにおいてCu2+がB. dendrobatidisに与える影響を評価し、Cu2+ 1 ppmで増殖抑制がおき、5 ppm以上で増殖を阻止できることを明らかにした。 以上のことから、アフリカツメガエルのCu2+への感受性を検証し、Cu2+をB. dendrobatidisの除菌法として、適用できるか検討した。銅標準液を用いて、対照群、Cu2+濃度0.02 ppmから19.68 ppmまで6段階の濃度のCu2+水を調整した。Cu2+がアフリカツメガエルに与える影響を身体的変化の観察(飼育水の変化を含む)、半数致死時間(LT50)の計測、血液化学検査および病理組織学的検査によって評価した。その結果Cu2+0.02 ppm群では死亡個体はなく、0.21 ppm群では浸漬239.5時間後に1匹が死亡した(n=6)。0.31 ppm群では、287.6時間で半数が死亡し(n=6)、Cu2+濃度が上昇するに従ってLT50の時間が短縮した。以上より、アフリカツメガエルのCu2+生存可能な濃度は0.2-0.3 ppm濃度域と推定した。しかし、0.21 ppm群でも実験終了時の飼育水は過剰な粘液分泌あるいは過剰脱皮により高度に混濁しており、皮膚の病理組織学的所見では表皮細胞層の肥厚、角化層の軽度肥厚と顕著な剥離を認め、孤在性壊死を伴い表皮細胞層の細胞間は離開して、空隙を形成、また上皮細胞の空胞化等の高度な変化がみられた。したがって、0.21 ppmでもCu2+による障害はあり、暴露時間の延長によりその障害はさらに強くなるものと推察された。 本章の実験から、Cu2+は両生類に対して0.2 ppm以上で皮膚障害を惹起し、より高濃度では、タンパク変性や腐食作用などによる皮膚の化学熱傷(chemical burn)の病態を引き起こし、皮膚浸透圧異常による血中電解質異常を誘発する。併せて、濃度依存性に血中酵素値を著しく上昇させ、毒性を示すことが確認された。本研究成果を考慮するとCu2+はB. dendrobatidisの除菌法として実用的でないことが明らかになった。しかしながら、Sploregnia属菌はCu2+0.006 ppm、Vibrio属細菌はCu2+0.1 ppmで増殖抑制効果があるとされる。B. dendrobatidisの培養は困難で、国内初の培養株樹立には1年を要した。これは、培養材料に含まれる皮膚表面の雑菌が除去できないことによる。このため、B. dendrobatidisの培養に際して、Cu2+を用いることで、選択培地になる可能性が示唆された。 以上、本研究では、我が国における輸入両生類のB. dendrobatidis感染実態を、分子生物学的な手法を用いて明らかにするとともに、自然発生性のツボカビ症の除菌・治療法を確立した。本研究で得られた成果は、飼育下両生類におけるB. dendrobatidis拡散阻止の方法を提供し、さらに、ツボカビ症の脅威にさらされる絶滅に瀕する希少な両生類の保全医学分野への貢献が期待される。
The animal trade has aided in pathogen dispersal and has frequently been the cause of pandemics such as SARS, H5N1, avian influenza, and koi herpes. Its effects may be sufficiently significant to cause declines in wild populations as well as serious economic losses around the world. Batrachochytrium dendrobatidis, a fungus which belongs to the Chytridiomycetes class of the Chytridiales order of fungi and which was first described in 1999, causes chytridiomycosis, a disease which infects amphibians. This fungus is responsible for the decline or extinction of more than 20 families and 200 species of amphibians.Abroad, the International Union for Conservation of Nature (IUCN) has designated B. dendrobatidis a pathogen that requires global monitoring and specific study in order to determine its role as a causative factor of chytridiomycosis, and also to evaluate its effects on ecological systems. B. dendrobatidis is also listed in the obligatory Aquatic Animal Health Code published by the World Organization for Animal Health (OIE). The first cases of chytridiomycosis in Asia were confirmed in captive exotic amphibians in Japan by Une et al. (2007), with some of the cases resulting in death. Japan is home to 63 species of amphibians, 40 species of anurans, and 23 species of urodeles, including endemic species. Of these, 42 species (67%) are listed as endangered and near-threatened on the Red List compiled by the Ministry of the Environment of the Government of Japan.B. dendrobatidis has a broad host range, is highly infectious, and has a high fatality rate. B. dendrobatidis zoospores can spread through water and cause infection rapidly over a wide area. To date, however, no studies have sought to determine the prevalence of B. dendrobatidis in imported exotic amphibians in Japan. In addition, the prevalence of B. dendrobatidis in captive amphibians is unknown, and, moreover, treatment methods and elimination techniques for chytridiomycosis have yet to be established for many of the amphibian species at risk of infection.The aim of this study was to survey imported and captive exotic amphibians in Japan in order to determine the prevalence of B. dendrobatidis, and to establish chytridiomycosis treatment and B. dendrobatidis elimination techniques. An additional goal was to decrease the threat of B. dendrobatidis infection in endemic Japanese amphibians.This study consists of three areas of research, described in Chapters 1 to 3, respectively.Chapter 1. B. dendrobatidis Prevalence and Haplotypes in Domestic and Imported Pet Amphibians in Japan.In order to clarify the infection status of B. dendrobatidis, we surveyed amphibians imported into Japan and those held in captivity for a long period or bred in Japan. Between 2008 and 2011, samples were taken from 820 individuals of 109 amphibian species and were analyzed using nested-PCR assays. A total of 76 samples (9.3%) from these 820 amphibians were identified as B. dendrobatidis-positive. Although B. dendrobatidis prevalence was 6.9% (18/259) in sampled amphibians from private collections and those commercially bred in Japan, it was 10.3% (58/561) in imported amphibians. The high prevalence of B. dendrobatidis in imported animals is possibly a result of the increased opportunity for infection due to the high density of individuals in closed environments in the distribution process, particularly breeding facilities, as well as reduced immunity, resulting from the stress of living in an environment different from their natural habitats.Both captive amphibians and those from the pet trade that were surveyed for this study included a significant number of healthy B. dendrobatidis carriers. We identified the genotypes of this fungus using partial DNA sequences of the internal transcribed spacer (ITS) region. Sequencing the PCR products of all 76 B. dendrobatidis-positive samples revealed 11 haplotypes. The species infected with the greatest variety of haplotypes was the Japanese-bred Xenopus laevis, in which haplotypes A, C, Q, and V were detected. This finding supports the contention that Xenopus laevis is a key B. dendrobatidis host species. Whereas five haplotypes, A, C, Q, V and Bd28, were detected in captive Japanese amphibians, the proportion of B. dendrobatidis haplotypes found in samples from Japan differed from that of those from other countries. Haplotype A (DNA Data Bank of Japan accession number AB435211) was found in 90% (52/58) of imported amphibians. Haplotype A is a hypervirulent strain of the global panzootic lineage (Bd-GPL). In contrast, we respectively detected haplotypes C, A, V, Q, and Bd28 in 44%, 28%, 17%, 5.6%, and 5.6% of the sample collected in Japan. On the basis of these results, we determined the diversity of B. dendrobatidis ITS haplotypes in Japan. The exotic amphibians, which had been kept in captivity for a long period of time, would most likely have come into contact with native amphibians during transport and at rearing facilities, allowing the formation of a variety of haplotype phases.Nine B. dendrobatidis haplotypes (A, C, E, L, Q, V, Bd28, Bd38, and Bd41) were detected in amphibians originating from Asia, whereas only three (A, Bd29, and Bd43) were detected in amphibians from outside of Asia. It is clear that Asian amphibians are infected with a high diversity of B. dendrobatidis haplotypes, a fact that supports the “Chytrid out of Asia” hypothesis described by Goka (2009).Chapter 2. Treatment of Spontaneous Chytridiomycosis in Captive Amphibians Using Itraconazole.In Chapter 1, it was mentioned that exotic amphibians imported for the pet trade had a B. dendrobatidis prevalence of 10.3%, and that we confirmed infection and die-off from chyridiomycosis. B. dendrobatidis infects amphibians not only through direct contact but also through B. dendrobatidis zoospores in water, which can cause rapid widespread infection. One particular set of chyridiomycosis-infected amphibians released a large number of zoospore, necessitating the urgent development of treatment methods and elimination techniques for chytridiomycosis.In Chapter 2, we describe the development of an effective, simple, and safe treatment method that targets clinical cases of chytridiomycosis in various amphibian species. The subjects were 12 amphibians (11 anurans of 4 different species and 1 urodela) diagnosed with chytridiomycosis by clinical signs, microscopic findings of shed skin, and a PCR assay. The treatment protocol consisted of a 10-minute immersion in a 0.01% aqueous solution of itraconazole every other day for a total of 7 treatments. We evaluated the efficacy of the treatment using 3 methods: clinical signs, direct microscopy, and a nested-PCR assay. In addition, re-examination was performed to confirm the elimination of chytridiomycosis after treatment (20–57 days, average 34.4 days). As a result, we succeeded in curing 11 of the amphibians of chytridiomycosis and eliminating B. dendrobatidis. Recurrence of chytridiomycosis has not been observed in the past 12 months. This protocol is the first treatment method to cure a caudata of chytridiomycosis. Using the same protocol, coauthor Dr. Une et al. (2012) succeeded in eradicating B. dendrobatidis in a Japanese giant salamander (Andrias japonicus), an endangered species considered to be a special natural monument of Japan. Therefore, we recommend this as a proven treatment method and elimination technique for chytridiomycosis for use in captive amphibians, including caudata.Chapter 3. Efficacy of Copper Ions (Cu2+) for Eradicating B. dendrobatidis : Assessment of Cu2+ on the African Clawed Frog (Xenopus laevis).In Chapter 2, we described the successful development of a method for treating chytridiomycosis in anuran and caudata. Although the medicinal agent used in that research, Itraconazole, is costly when employed to treat humans, it is very effective for treating chytridiomycosis. In the case of amphibians, test animals were placed in small, individual containers, enabling total immersion in the chemical agent and maximizing the cost performance of the medicine.Although this method is well suited for treating terrestrial amphibians, because of the complexity and high cost of managing breeding water, it is not suitable for treating the African clawed frog (Xenopus laevis) or other aquatic amphibians. The African clawed frog is an important laboratory animal that is widely used in biology, genetics, embryology and other fields around the world. The African clawed frog is also an important natural host and carrier of B. dendrobatidis. Indeed, some studies have proposed that the pervasiveness of the African clawed frog may have facilitated the global spread of B. dendrobatidis. As discussed in Chapter 1, B. dendrobatidis was detected in 26.9% of African clawed frogs surveyed and there is currently no established method for eradicating B. dendrobatidis in this species.In this Chapter, we focus on the use of copper ions (Cu2+) as a safe, simple, inexpensive and effective method for eradicating B. dendrobatidis in the African clawed frog. Cu2+ is already used to control bacterial and fungal diseases in fisheries. A previous study demonstrated the application of a 0.006 ppm Cu2+ solution to control Saprolegnia, a fungus which infects fish eggs. Une et al. (unpubl. data) used a B. dendrobatidis strain to examine the effect of Cu2+ on B. dendrobatidis in vitro, and found that 1 ppm of Cu2+ could inhibit fungal growth, while 5 ppm or more could prevent fungal proliferation. We therefore set out to assess the sensitivity of African clawed frogs to Cu2+ and to investigate the application of Cu2+ as means of eradicating B. dendrobatidis. We prepared a copper standard solution for the control group as well as six additional Cu2+ solutions with ion concentrations ranging from 0.02 to 19.68 ppm. The effects of Cu2+ on the African clawed frog were determined by observing physical changes (including changes in the breeding water), measurement of the 50% lethal time (LT50), blood biochemistry, and histopathological examination. No deaths were observed after exposure to the 0.02 ppm Cu2+ solution, one animal died after 239.5 hours of exposure to the 0.21 ppm solution, and half of the animals died after 287.6 hours of exposure to the 0.31 ppm solution; in other words, LT50 and Cu2+ are inversely proportional, with LT50 decreasing as the Cu2+ concentration increases. The optimum Cu2+ concentration of viable African clawed frog is therefore considered to be approximately 0.2-0.3 ppm However, even in the 0.21 ppm group, the breeding water at the end of the experiment was very cloudy due to excessive mucus secretion and/or the presence of sloughed skin. Histopathological examination of the skin revealed acanthosis, mild hyperkeratosis and detachment of the cornified layer in the low Cu2+ concentration group. There were severe changes in skin structure, such as intercellular dissociation accompanied by single cell necrosis, cleft formation between the epidermal cells, and reticular degeneration in the epidermal layer in the high Cu2+ concentration group. These findings indicate that Cu2+ is capable of harming a specimen being treated, even at 0.21 ppm, and that the severity of any damage could be expected to increase with continued exposure.The results described in this Chapter therefore show that Cu2+ concentrations of 0.2 ppm or higher damage the skin of amphibians. At higher concentrations, Cu2+ may cause chemical burns which result in protein denaturation and corrosion of the skin as well as blood electrolyte abnormalities, which result in the damaged skin being unable to function effectively in osmoregulation. Blood enzyme activities will also increase dramatically as the Cu2+ concentration increases and the solution becomes toxic. Thus, these findings show that Cu2+ is not well suited for eradicating B. dendrobatidis. However, Cu2+ can inhibit the proliferation of Saprolegnia at 0.006 ppm and Vibrio bacteria at 0.1 ppm. Culturing B. dendrobatidis is very difficult and establishing the first strain in Japan took one year. The reason it was so time-consuming was because bacteria from the surface of the frog skin could not be removed from the culture medium. However, it may now be possible to supplement the culture medium with Cu2+ and create a selective medium for B. dendrobatidis.We have clarified the extent of B. dendrobatidis infection in amphibians introduced to Japan from abroad using a molecular biology approach, and have established a method for treatment and eliminating spontaneous chytridiomycosis. The findings from this research now provide us with a method for preventing the proliferation of B. dendrobatidis in captive amphibians and show promise for developing medical treatments for wild amphibians threatened by chytridiomycosis.
目次
- 2015-08-01 再収集 (2コマ目)
- 2023-03-01 再収集 (3コマ目)
- 2023-03-01 再収集 (4コマ目)