Performance Modeling and On-Chip Memory Structures for Minimum Energy Operation in Voltage-Scaled LSI Circuits 低電圧集積回路の消費エネルギー最小化のための解析的性能予測とオンチップメモリ構造

著者

    • Shiomi, Jun

書誌事項

タイトル

Performance Modeling and On-Chip Memory Structures for Minimum Energy Operation in Voltage-Scaled LSI Circuits

タイトル別名

低電圧集積回路の消費エネルギー最小化のための解析的性能予測とオンチップメモリ構造

著者名

Shiomi, Jun

学位授与大学

京都大学

取得学位

博士(情報学)

学位授与番号

甲第20778号

学位授与年月日

2017-11-24

注記・抄録

元資料の権利情報 : Cited from:

元資料の権利情報 : Jun Shiomi, Tohru Ishihara, and Hidetoshi Onodera, “A Necessary and Sufficient Condition of Supply and Threshold Voltages in CMOS Circuits for Minimum Energy Point Operation, ” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E100-A, no. 12, pp. (TBD), Dec. 2017 (to appear). (🄫2017 IEICE)

元資料の権利情報 : Jun Shiomi, Tohru Ishihara, and Hidetoshi Onodera, “Area-Efficient Fully Digital Memory Using Minimum Height Standard Cells for Near-Threshold Voltage Computing, ” Integration, the VLSI Journal, Elsevier, 2017, in press http://dx.doi.org/10.1016/j.vlsi.2017.07.001 (🄫2017 Elsevier)

元資料の権利情報 : Jun Shiomi, Tohru Ishihara, and Hidetoshi Onodera, “Statistical Timing Modeling Based on a Lognor- mal Distribution Model for Near-Threshold Circuit Optimization, ” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E98-A, no. 07, pp. 1455–1466, Jul. 2015. (🄫2015 IEICE)

元資料の権利情報 : Jun Shiomi, Tohru Ishihara, and Hidetoshi Onodera, “An Energy-Efficient On-Chip Memory Structure for Variability-Aware Near-Threshold Operation, ” in International Symposium on Quality Electronic Design, Mar. 2015, pp. 23–28. (🄫2015 IEEE)

元資料の権利情報 : Jun Shiomi, Tohru Ishihara, and Hidetoshi Onodera, “Microarchitectural-Level Statistical Timing Models for Near-Threshold Circuit Design, ” in Asia and South Pacific Design Automation Conference, Jan. 2015, pp. 87–93. (🄫2015 IEEE)

元資料の権利情報 : Figure 2.2: The definition of kσ worst case delay.(🄫2015 IEICE)

元資料の権利情報 : Figure 3.1: Definition of averaging effect ratio.(🄫2015 IEICE)

元資料の権利情報 : Figure 3.2: Buffer chain example where all buffers have the same fan-out. (🄫2015 IEICE)

元資料の権利情報 : Figure 3.3: Buffer chain simulation result (VDD = 0.4 V). μ = - 21, σ = 0.21 and r = 0.32. (🄫2015 IEICE)

元資料の権利情報 : Figure 3.4: Averaging effect ratio for buffer chains. (🄫2015 IEICE)

元資料の権利情報 : Figure 3.5: Logic depth vs. the 4σ worst case delay. (🄫2015 IEICE)

元資料の権利情報 : Figure 3.6: Parallelism of 8-stage-buffer chains. (🄫2015 IEICE)

元資料の権利情報 : Figure 3.7: The number of critical paths Ncp vs. the 3σ worst case delay. The logic depth is 8. (🄫2015 IEICE)

元資料の権利情報 : Figure 3.8: The number of critical paths Ncp vs. the 3σ worst case delay. The logic depth is 1. (🄫2015 IEEE)

元資料の権利情報 : Figure 3.9: Delay distributions for different gate sizes. (🄫2015 IEICE)

元資料の権利情報 : Figure 3.10: Buffer size X vs. 4σ worst case delay. (🄫2015 IEICE)

元資料の権利情報 : Figure 3.11: The 4σ worst case delay for different gate sizes. (🄫2015 IEICE)

元資料の権利情報 : Figure 3.12: Test circuit structure for NAND2 and NOR2. (🄫2015 IEICE)

元資料の権利情報 : Figure 3.13: Averaging effect ratio for NAND2/NOR2 chains. (🄫2015 IEICE)

元資料の権利情報 : Figure 3.14: Logic depth vs. 4σ worst case delay for NAND2/NOR2 chains. (🄫2015 IEICE)

元資料の権利情報 : Figure 3.15: The number of critical paths Ncp vs. the 3σ worst case delay for NAND2/NOR2 chains. (🄫2015 IEICE)

元資料の権利情報 : Figure 3.16: Gate size X vs. 4σ worst case delay for NAND2/NOR2 chains. (🄫2015 IEICE)

元資料の権利情報 : Figure 3.17: The 4σ worst case delay of NAND2/NOR2 chains with different gate sizes. (🄫2015 IEICE)

元資料の権利情報 : Figure 3.18: p-parallel n-stage buffer chains where all buffers in chains have the same gate size X. (🄫2015 IEICE)

元資料の権利情報 : Figure 3.20: Memory readout structure. (a) SRAM (b) SCM. (🄫2015 IEEE)

元資料の権利情報 : Figure 3.21: CDF versus readout delay. (🄫2015 IEEE)

元資料の権利情報 : Figure 4.1: The concept of minimum height standard-cells. (🄫2017 Elsevier)

元資料の権利情報 : Figure 4.2: An inverter cell with minimum cell height. (🄫2017 Elsevier)

元資料の権利情報 : Figure 4.3: Simplified latch schematic and clock-shared 4-bit latch. (🄫2017 Elsevier)

元資料の権利情報 : Figure 4.4: Proposed SCM structure. (🄫2017 Elsevier)

元資料の権利情報 : Figure 4.5: Write clocking scheme of the proposed SCM. (🄫2017 Elsevier)

元資料の権利情報 : Figure 4.6: Readout scheme of the proposed SCM. (🄫2017 Elsevier)

元資料の権利情報 : Figure 4.7: (a) Schematic of cross-coupled inverters. (b) Butterfly curve of cross-coupled inverters. (🄫2017 Elsevier)

元資料の権利情報 : Figure 4.8: Verification of the analytical stability model of latch cells (4.2). (🄫2017 Elsevier)

元資料の権利情報 : Figure 4.9: Yields of latch cells for various gate widths. (🄫2017 Elsevier)

元資料の権利情報 : Figure 4.10: The layout of minimum height standard-cells. (🄫2017 Elsevier)

元資料の権利情報 : Figure 4.11: Layouts of the proposed 16 kb SCM (512 32). (🄫2017 Elsevier)

元資料の権利情報 : Figure 4.12: Area-comparison between the proposed SCMs, prior-art SCMs and SRAMs. The area of the SCMs in [1] is multiplied by (100 nm=50 nm)2 = 4. (🄫2017 Elsevier)

元資料の権利情報 : Figure 4.13: Estimated maximum operating frequency with a scaled VDD. (🄫2017 Elsevier)

元資料の権利情報 : Figure 4.14: Estimated write energy consumption per bit with a scaled VDD. (🄫2017 Elsevier)

元資料の権利情報 : Figure 4.15: Estimated read energy consumption per bit with a scaled VDD. (🄫2017 Elsevier)

元資料の権利情報 : Figure 4.16: Estimated sleep energy consumption per bit with a scaled VDD. (🄫2017 Elsevier)

元資料の権利情報 : Figure 4.17: Leakage power per bit with a scaled VDD. (🄫2017 Elsevier)

元資料の権利情報 : Figure 5.2: Energy and performance contours for a 50-stage inverter chain. Solid line: energy contour. Dashed line: performance contour. Bold line: minimum energy curve. (🄫2017 IEICE)

元資料の権利情報 : Figure 5.3: Minimum energy points in sub-threshold region. (🄫2017 IEICE)

元資料の権利情報 : Figure 5.4: Minimum energy curve of a circuit designed with a 28-nm process technology. (🄫2017 IEICE)

元資料の権利情報 : Figure 5.5: Minimum energy points in super-threshold region. (🄫2017 IEICE)

元資料の権利情報 : Figure 5.6: Minimum energy curves for different temperature and activity. (🄫2017 IEICE)

元資料の権利情報 : Figure 5.8: The SCM structure. (🄫2017 IEICE)

元資料の権利情報 : Figure 5.9: Minimum energy curve of the SCM. Solid line: energy contour [nJ/cycle]. Dashed line: Fmax contour. Bold line: minimum energy curve. (🄫2017 IEICE)

元資料の権利情報 : Figure 5.12: Ed/Es ratio on MEPs. (🄫2017 IEICE)

元資料の権利情報 : Figure 5.13: Ed/Es ratio on 391 kHz Fmax contour. (🄫2017 IEICE)

元資料の権利情報 : Figure 5.14: Ed/Es ratio on 8 MHz Fmax contour. (🄫2017 IEICE)

元資料の権利情報 : Figure 5.15: Ed/Es ratio on 28.57 Hz Fmax contour. (🄫2017 IEICE)

元資料の権利情報 : Figure 5.16: Definition of the parameter αM. (🄫2017 IEICE)

元資料の権利情報 : Figure 5.17: Minimum energy curve of the SCM for αM = 0.1. Solid line: energy contour [nJ/cycle].Dashed line: Fmax contour. Bold line: minimum energy curves. (🄫2017 IEICE)

元資料の権利情報 : Table 3.1: Summary of properties. C: Corollary. L: Lemma. T: Theorem. p: degree of parallelism. N: logic depth. W: gate width. L: gate length. STV: Super-Threshold Voltage. (🄫2015 IEICE)

元資料の権利情報 : Table 4.1: 5.5-track minimum height standard cell library in the target 65-nm FD-SOI process technology. (🄫2017 Elsevier)

元資料の権利情報 : Table 4.2: Comparison between Prior-Art SCMs and SRAMs. (🄫2017 Elsevier)

目次

  1. 2018-07-04 再収集 (2コマ目)
  2. 2021-05-25 再収集 (3コマ目)
  3. 2021-05-25 再収集 (4コマ目)
  4. 2023-09-04 再収集 (5コマ目)
  5. 2023-09-04 再収集 (6コマ目)
21アクセス

各種コード

  • NII論文ID(NAID)
    500001048880
  • NII著者ID(NRID)
    • 8000001621882
  • DOI(JaLC)
  • DOI
  • 本文言語コード
    • eng
  • データ提供元
    • 機関リポジトリ
    • NDLデジタルコレクション
ページトップへ