Prefabrication of Vascularized Allogenic Bone Graft in a Rat by Implanting a Flow-Through Vascular Pedicle and Basic Fibroblast Growth Factor Containing Hydroxyapatite/Collagen Composite

著者

    • 山口, 幸之助

書誌事項

タイトル

Prefabrication of Vascularized Allogenic Bone Graft in a Rat by Implanting a Flow-Through Vascular Pedicle and Basic Fibroblast Growth Factor Containing Hydroxyapatite/Collagen Composite

著者名

山口, 幸之助

学位授与大学

香川大学

取得学位

博士(医学)

学位授与番号

甲第670号

学位授与年月日

2017-06-22

注記・抄録

Background Basic fibroblast growth factor (bFGF) is known to stimulate bone formation and angiogenesis. Hydroxyapatite/collagen composite (HAp/Col) is also known to have very strong bone conductive activity. In this study, prefabrication of vascularized allogenic bone (allo-bone) graft was attempted in recipients by implanting vascular bundles from recipients into the transplanted allo-bone graft. Furthermore, the effect of bFGF-containing HAp/Col on the prefabricated vascularized allo-bone graft was investigated.

Methods In this study, 32 Sprague-Dawley rats were used as donors, and bone grafts were collected from their femora. Thirty-two Wistar rats (recipients) were divided into four groups, and the allo-bone grafts were transplanted into the thigh region. In the experimental groups, one or both of the flow-through saphenous vascular bundles and 100-μg bFGF-containing HAp/Col were implanted into the medullary cavity of the allo-bone grafts. In the control group, neither was implanted. These rats were sacrificed at 4 weeks after transplantation, and bone formation, angiogenesis, and bone resorption in the transplanted allo-bone grafts were evaluated histologically and genetically.

Results Bone formation and angiogenesis in the transplanted allo-bone graft were effectively stimulated by implanting vascular bundles or bFGF-containing HAp/Col on both histological and genetic evaluations compared with the control group. The most significant stimulation was observed in the group in which both were implanted. Bone resorption was not stimulated in any group.

Conclusion By implanting a flow-through vascular bundle and bFGF-containing HAp/Col, an ideal vascularized allo-bone graft that had high bone formative and angiogenetic activities and did not stimulate bone resorptive activity was prefabricated.

Background  Basic fibroblast growth factor (bFGF) is known to stimulate bone formation and angiogenesis. Hydroxyapatite/collagen composite (HAp/Col) is also known to have very strong bone conductive activity. In this study, prefabrication of vascularized allogenic bone (allo-bone) graft was attempted in recipients by implanting vascular bundles from recipients into the transplanted allo-bone graft. Furthermore, the effect of bFGF-containing HAp/Col on the prefabricated vascularized allo-bone graft was investigated.

Methods  In this study, 32 Sprague-Dawley rats were used as donors, and bone grafts were collected from their femora. Thirty-two Wistar rats (recipients) were divided into four groups, and the allo-bone grafts were transplanted into the thigh region. In the experimental groups, one or both of the flow-through saphenous vascular bundles and 100-μg bFGF-containing HAp/Col were implanted into the medullary cavity of the allo-bone grafts. In the control group, neither was implanted. These rats were sacrificed at 4 weeks after transplantation, and bone formation, angiogenesis, and bone resorption in the transplanted allo-bone grafts were evaluated histologically and genetically.

Results  Bone formation and angiogenesis in the transplanted allo-bone graft were effectively stimulated by implanting vascular bundles or bFGF-containing HAp/Col on both histological and genetic evaluations compared with the control group. The most significant stimulation was observed in the group in which both were implanted. Bone resorption was not stimulated in any group.

Conclusion  By implanting a flow-through vascular bundle and bFGF-containing HAp/Col, an ideal vascularized allo-bone graft that had high bone formative and angiogenetic activities and did not stimulate bone resorptive activity was prefabricated.

16アクセス

各種コード

  • NII論文ID(NAID)
    500001067064
  • NII著者ID(NRID)
    • 8000001628084
  • DOI
  • 本文言語コード
    • eng
  • データ提供元
    • 機関リポジトリ
    • NDLデジタルコレクション
ページトップへ