Calcium-dependent generation of N-acylethanolamines and lysophosphatidic acids by glycerophosphodiesterase GDE7

著者

    • Rahman, Iffat Ara Sonia

書誌事項

タイトル

Calcium-dependent generation of N-acylethanolamines and lysophosphatidic acids by glycerophosphodiesterase GDE7

著者名

Rahman, Iffat Ara Sonia

学位授与大学

香川大学

取得学位

博士(医学)

学位授与番号

甲第652号

学位授与年月日

2017-03-24

注記・抄録

AbstractN-Acylethanolamines form a class of lipid mediators and include an endocannabinoid arachidonoylethanolamide (anandamide), analgesic and anti-inflammatory palmitoylethanolamide, and appetite-suppressing oleoylethanolamide. In animal tissues, N-acylethanolamines are synthesized from N-acylated ethanolamine phospholipids directly by N-acylphosphatidylethanolamine-hydrolyzing phospholipase D or through multi-step pathways via N-acylethanolamine lysophospholipids. We previously reported that glycerophosphodiesterase (GDE) 4, a member of the GDE family, has lysophospholipase D (lysoPLD) activity hydrolyzing N-acylethanolamine lysophospholipids to N-acylethanolamines. Recently, GDE7 was shown to have lysoPLD activity toward lysophosphatidylcholine to produce lysophosphatidic acid (LPA). Here, we examined the reactivity of GDE7 with N-acylethanolamine lysophospholipids as well as the requirement of divalent cations for its catalytic activity. When overexpressed in HEK293 cells, recombinant GDE7 proteins of human and mouse showed lysoPLD activity toward N-palmitoyl, N-oleoyl, and N-arachidonoyl-lysophosphatidylethanolamines and N-palmitoyl-lysoplasmenylethanolamine to generate their corresponding N-acylethanolamines and LPAs. However, GDE7 hardly hydrolyzed glycerophospho-N-palmitoylethanolamine. Overexpression of GDE7 in HEK293 cells increased endogenous levels of N-acylethanolamines and LPAs. Interestingly, GDE7 was stimulated by micromolar concentrations of Ca2 + but not by millimolar concentrations of Mg2 +, while GDE4 was stimulated by Mg2 + but was insensitive to Ca2 +. GDE7 was widely distributed in various tissues of humans and mice with the highest levels in their kidney tissues. These results suggested that GDE7 is a novel Ca2 +-dependent lysoPLD, which is involved in the generation of both N-acylethanolamines and LPAs.

Abstract N-Acylethanolamines form a class of lipid mediators and include an endocannabinoid arachidonoylethanolamide (anandamide), analgesic and anti-inflammatory palmitoylethanolamide, and appetite-suppressing oleoylethanolamide. In animal tissues, N-acylethanolamines are synthesized from N-acylated ethanolamine phospholipids directly by N-acylphosphatidylethanolamine-hydrolyzing phospholipase D or through multi-step pathways via N-acylethanolamine lysophospholipids. We previously reported that glycerophosphodiesterase (GDE) 4, a member of the GDE family, has lysophospholipase D (lysoPLD) activity hydrolyzing N-acylethanolamine lysophospholipids to N-acylethanolamines. Recently, GDE7 was shown to have lysoPLD activity toward lysophosphatidylcholine to produce lysophosphatidic acid (LPA). Here, we examined the reactivity of GDE7 with N-acylethanolamine lysophospholipids as well as the requirement of divalent cations for its catalytic activity. When overexpressed in HEK293 cells, recombinant GDE7 proteins of human and mouse showed lysoPLD activity toward N-palmitoyl, N-oleoyl, and N-arachidonoyl-lysophosphatidylethanolamines and N-palmitoyl-lysoplasmenylethanolamine to generate their corresponding N-acylethanolamines and LPAs. However, GDE7 hardly hydrolyzed glycerophospho-N-palmitoylethanolamine. Overexpression of GDE7 in HEK293 cells increased endogenous levels of N-acylethanolamines and LPAs. Interestingly, GDE7 was stimulated by micromolar concentrations of Ca2 + but not by millimolar concentrations of Mg2 +, while GDE4 was stimulated by Mg2 + but was insensitive to Ca2 +. GDE7 was widely distributed in various tissues of humans and mice with the highest levels in their kidney tissues. These results suggested that GDE7 is a novel Ca2 +-dependent lysoPLD, which is involved in the generation of both N-acylethanolamines and LPAs.

14アクセス

各種コード

  • NII論文ID(NAID)
    500001082953
  • NII著者ID(NRID)
    • 8000001966293
  • DOI
  • 本文言語コード
    • eng
  • データ提供元
    • 機関リポジトリ
    • NDLデジタルコレクション
ページトップへ