Nonlinear instability of plane liquid sheets

抄録

<jats:p>A nonlinear stability analysis has been carried out for plane liquid sheets moving in a gas medium at rest by a perturbation expansion technique with the initial amplitude of the disturbance as the perturbation parameter. The first, second and third order governing equations have been derived along with appropriate initial and boundary conditions which describe the characteristics of the fundamental, and the first and second harmonics. The results indicate that for an initially sinusoidal sinuous surface disturbance, the thinning and subsequent breakup of the liquid sheet is due to nonlinear effects with the generation of higher harmonics as well as feedback into the fundamental. In particular, the first harmonic of the fundamental sinuous mode is varicose, which causes the eventual breakup of the liquid sheet at the half-wavelength interval of the fundamental wave. The breakup time (or length) of the liquid sheet is calculated, and the effect of the various flow parameters is investigated. It is found that the breakup time (or length) is reduced by an increase in the initial amplitude of disturbance, the Weber number and the gas-to-liquid density ratio, and it becomes asymptotically insensitive to the variations of the Weber number and the density ratio when their values become very large. It is also found that the breakup time (or length) is a very weak function of the wavenumber unless it is close to the cut-off wavenumbers.</jats:p>

収録刊行物

被引用文献 (11)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ