Distinct constitutive and low-CO <sub>2</sub> -induced CO <sub>2</sub> uptake systems in cyanobacteria: Genes involved and their phylogenetic relationship with homologous genes in other organisms

  • Mari Shibata
    Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan; Kazusa DNA Research Institute, Kisarazu, Chiba 292-0814, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; and Department of Plant Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
  • Hiroshi Ohkawa
    Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan; Kazusa DNA Research Institute, Kisarazu, Chiba 292-0814, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; and Department of Plant Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
  • Takakazu Kaneko
    Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan; Kazusa DNA Research Institute, Kisarazu, Chiba 292-0814, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; and Department of Plant Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
  • Hideya Fukuzawa
    Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan; Kazusa DNA Research Institute, Kisarazu, Chiba 292-0814, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; and Department of Plant Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
  • Satoshi Tabata
    Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan; Kazusa DNA Research Institute, Kisarazu, Chiba 292-0814, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; and Department of Plant Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
  • Aaron Kaplan
    Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan; Kazusa DNA Research Institute, Kisarazu, Chiba 292-0814, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; and Department of Plant Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
  • Teruo Ogawa
    Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan; Kazusa DNA Research Institute, Kisarazu, Chiba 292-0814, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; and Department of Plant Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

抄録

<jats:p> Cyanobacteria possess a CO <jats:sub>2</jats:sub> -concentating mechanism that involves active CO <jats:sub>2</jats:sub> uptake and HCO <jats:inline-formula> <jats:tex-math notation="LaTeX">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document}</jats:tex-math> </jats:inline-formula> transport. For CO <jats:sub>2</jats:sub> uptake, we have identified two systems in the cyanobacterium <jats:italic>Synechocystis</jats:italic> sp. strain PCC 6803, one induced at low CO <jats:sub>2</jats:sub> and one constitutive. The low CO <jats:sub>2</jats:sub> -induced system showed higher maximal activity and higher affinity for CO <jats:sub>2</jats:sub> than the constitutive system. On the basis of speculation that separate NAD(P)H dehydrogenase complexes were essential for each of these systems, we reasoned that inactivation of one system would allow selection of mutants defective in the other. Thus, mutants unable to grow at pH 7.0 in air were recovered after transformation of a Δ <jats:italic>ndhD3</jats:italic> mutant with a transposon-bearing library. Four of them had tags within <jats:italic>slr1302</jats:italic> (designated <jats:italic>cupB</jats:italic> ), a homologue of <jats:italic>sll1734</jats:italic> ( <jats:italic>cupA</jats:italic> ), which is cotranscribed with <jats:italic>ndhF3</jats:italic> and <jats:italic>ndhD3</jats:italic> . The Δ <jats:italic>cupB,</jats:italic> Δ <jats:italic>ndhD4</jats:italic> , and Δ <jats:italic>ndhF4</jats:italic> mutants showed CO <jats:sub>2</jats:sub> -uptake characteristics of the low CO <jats:sub>2</jats:sub> induced system observed in wild type. In contrast, mutants Δ <jats:italic>cupA,</jats:italic> Δ <jats:italic>ndhD3</jats:italic> , and Δ <jats:italic>ndhF3</jats:italic> showed characteristics of the constitutive CO <jats:sub>2</jats:sub> -uptake system. Double mutants impaired in one component of each of the systems were unable to take up CO <jats:sub>2</jats:sub> and required high CO <jats:sub>2</jats:sub> for growth. Phylogenetic analysis indicated that the <jats:italic>ndhD3</jats:italic> / <jats:italic>ndhD4</jats:italic> -, <jats:italic>ndhF3</jats:italic> / <jats:italic>ndhF4</jats:italic> -, and <jats:italic>cupA</jats:italic> / <jats:italic>cupB</jats:italic> -type genes are present only in cyanobacteria. Most of the cyanobacterial strains studied possess the <jats:italic>ndhD3</jats:italic> / <jats:italic>ndhD4-</jats:italic> , <jats:italic>ndhF3</jats:italic> / <jats:italic>ndhF4-</jats:italic> , and <jats:italic>cupA</jats:italic> / <jats:italic>cupB</jats:italic> -type genes in pairs. Thus, the two types of NAD(P)H dehydrogenase complexes essential for low CO <jats:sub>2</jats:sub> -induced and constitutive CO <jats:sub>2</jats:sub> -uptake systems associated with the NdhD3/NdhF3/CupA-homologues and NdhD4/NdhF4/CupB-homologues, respectively, appear to be present in these cyanobacterial strains but not in other organisms. </jats:p>

収録刊行物

被引用文献 (16)*注記

もっと見る

関連プロジェクト

もっと見る

キーワード

詳細情報 詳細情報について

問題の指摘

ページトップへ