Formation of the Molten Globule-Like State of Cytochrome c Induced by n-Alkyl Sulfates at Low Concentrations

書誌事項

タイトル別名
  • Formation of the Molten Globule-Like State of Cytochrome <i>c</i> Induced by <i>n</i>-Alkyl Sulfates at Low Concentrations

この論文をさがす

抄録

The molten globule state of cytochrome c is the major intermediate of protein folding. Elucidation of the thermodynamic mechanism of conformational stability of the molten globule state would enhance our understanding of protein folding. The formation of the molten globule state of cytochrome c was induced by n-alkyl sulfates including sodium octyl sulfate, SOS; sodium decyl sulfate, SDeS; sodium dodecyl sulfate, SDS; and sodium tetradecyl sulfate, STS, at low concentrations. The refolding states of the protein were monitored by spectroscopic techniques including circular dichroism (CD), visible absorbance and fluorescence. The effect of n-alkyl sulfates on the structure of acid-unfolded horse cytochrome c at pH 2 was utilized to investigate the contribution of hydrophobic interactions to the stability of the molten globule state. The addition of n-alkyl sulfates to the unfolded state of cytochrome c appears to support the stabilized form of the molten globule. The m-values of the refolded state of cytochrome c by SOS, SDeS, SDS, and STS showed substantial variation. The enhancement of m-values as the stability criterion of the molten globule state corresponded with increasing chain length of the cited n-alkyl sulfates. The compaction of the molten globule state induced by SDS, as a prototype for other n-alkyl sulfates, relative to the unfolded state of cytochrome c was confirmed by Stokes radius and thermal transition point (Tm) measured by microviscometry and differential scanning calorimetry (DSC), respectively. Thus, hydrophobic interactions play an important role in stabilizing the molten globule state.

収録刊行物

被引用文献 (1)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ