書誌事項

Autonomic and enteric ganglia : transmission and its pharmacology

edited by Alexander G. Karczmar, Kyoto Koketsu, and Syogoro Nishi

Plenum Press, c1985

大学図書館所蔵 件 / 13

この図書・雑誌をさがす

注記

Includes bibliographies and index

内容説明・目次

内容説明

In the early 1960s, Dr. Alexander G. Karczmar, Professor of Pharmacology and Experimental Therapeutics at the Stritch School of Medicine of the Medical Center at Loyola University of Chicago, was confronted with a certain technical problem concerning his studies of synaptic transmission by means of microelectrode methods. He thought that the problem might be resolved if he could interest a microelectrode expert such as Dr. Kyozo Koketsu in his studies. Dr. Koketsu was a past member of the Faculty of the Kurume University School of Medicine who as a Research Fellow at the Australian National University had helped Sir John Eccles, subse- quently a Nobel Prize winner, in developing microelectrode procedures. After further considering the matter, Dr. Karczmar was pleasantly sur- prised to discover that by coincidence Dr. Koketsu was his neighbor, serving at that time as a Research Professor at the Neuropsychiatry Institute of the University of Illinois, College of Medicine of Chicago. This was the beginning of a long relationship, as Dr. Koketsu joined Dr. Karczmar at Loyola as Professor of Pharmacology and Therapeutics and Director of the Neurophysiology Laboratory at the Stritch School of Medicine. It was not long before Dr. Syogoro Nishi-Dr. Koketsu's former colleague on the Faculty of Medicine at Kurume University, and at that time a Research Fellow in Neurophysiology at the Rockefeller Institute in New York- joined Drs. Koketsu and Karczmar at Loyola. Although in due time Drs.

目次

I. History and Anatomical Bases of Ganglionic and Enteric Transmission.- 1. Historical Development of Concepts of Ganglionic Transmission.- I. Anatomical and Morphological Aspects of Past Ganglionic Research.- II. Neurotransmitters.- III. Neuropharmacology and Neurophysiology.- IV. Unanswered Questions.- References.- 2. Anatomy, Histology, and Electron Microscopy of Sympathetic, Parasympathetic, and Enteric Neurons.- I. Introduction.- II. Parasympathetic and Sympathetic Ganglia.- A. Gross Anatomical Considerations.- B. Convergence and Divergence.- C. Origin of Fibers That Form Postganglionic Nerves from Superior Cervical Ganglia.- D. Innervation of the Gallbladder.- E. Innervation of the Urinary Bladder.- F. Ultrastructural Considerations of Principal Sympathetic Ganglion Cells.- III. Chromaffin Cells, Small Intensely Fluorescent Cells, Small Granule-Containing Cells, Interneurons, Paraneurons, and Paraganglia.- IV. Enteric Nervous System.- A. Extrinsic Nerves.- B. Intrinsic Nerves.- C. Glial Cells.- V. Peptides in Other Autonomic Ganglia.- References.- II. Transmission and Modulation in Sympathetic Ganglia and Their Neuropharmacology.- 3. General Concepts of Ganglionic Transmission and Modulation.- I. Introduction.- A. Historical Remarks.- B. Scope of This Chapter.- II. Synaptic Transmission, Its Modulation, and Its Components.- A. Synaptic and Modulatory Events in Sympathetic Ganglia.- B. Neural Elements, Transmitters, and Modulators.- III. Interactions and Reflex Functions.- IV. Conclusions: Sympathetic Ganglia as "Little Brains".- References.- 4. Electrophysiological Properties of Sympathetic Neurons.- I. Membrane Characteristics at Rest.- A. Resting Potential.- B. Electric Constants.- C. Voltage-Current Relationship.- II. Active Membrane Characteristics.- A. Action Potentials.- B. Afterpotentials.- III. Effects of Ions and Drugs.- A. Effects of Lithium.- B. Effects of Some Divalent Cations.- C. Effects of Catecholamines on Ca2+-Dependent Potentials.- D. Hyperpolarization Caused by the Activity of an Electrogenic Sodium Pump.- E. Rhythmic Hyperpolarizations in Caffeine-Treated Neurons.- IV. Conclusions.- References.- 5. General Characteristics and Mechanisms of Nicotinic Transmission in Sympathetic Ganglia.- I. Physiological Significance.- II. General Characteristics.- A. Amphibian Ganglia.- B. Mammalian Ganglia.- III. Reversal Potential and Ionic Mechanism of the Fast Excitatory Postsynaptic Potential.- A. Reversal Potential.- B. Effect of Ion Substitution.- IV. Relationship between the Synaptic Current and Potential.- A. Time-Course of the Synaptic Current.- B. Current-Voltage Relationship.- C. Reconstruction of the Fast Excitatory Postsynaptic Potential from the Fast Excitatory Postsynaptic Current.- D. Effects of Anticholinesterases.- E. Effects of Low Temperature.- V. Characteristics of the Ion-Channel Gating.- A. Physiological Significance of the Decay Phase of the Fast Excitatory Postsynaptic Current.- B. Noise Analysis.- C. Two Different Types of Ion Channels or a Single Type of Ion Channel Having a Complexed Pattern of Gating.- D. Comparison with Other Ion Channels Gated by the Nicotinic Action of Acetylcholine.- E. Acetylcholine-Activated Ion Channel in the Cultured Bullfrog Sympathetic Ganglion Cell.- VI. Mode of Acetylcholine Action on the Nicotinic Receptor.- A. Dose-Response Curve of Acetylcholine Action.- B. Pharmacological Characteristics of the Nicotinic Receptor.- VII. Regulatory Role of Ca2+ in the Gating Mechanism of the Nicotinic Receptor-Ion Channel Complex.- A. Bimodal Actions of Ca2+.- B. Changes in the Kinetic Parameters.- C. Possible Intracellular Action of Ca2+.- D. Ca2+ Binding at the Subsynaptic Membrane.- VIII. Plastic Modulation of the Nicotinic Receptor-Ion Channel Complex by Ca2+-Dependent Action Potentials.- IX. Desensitization of the Nicotinic Receptor.- X. Conclusions.- References.- 6. Nicotinic Receptors: Activation and Block.- I. General Characteristics.- II. Recognition Component.- A. Mechanisms of Acetylcholine Binding.- B. Specific Pharmacological Properties of Ganglionic Acetylcholine Receptors.- III. Ionic Channel.- A. Ionic Permeability.- B. Single-Channel Lifetime and Conductance.- IV. Blocking Mechanisms.- A. Mechanisms of the Blockade of Ganglionic Acetylcholine Receptors.- B. Chemical Structure of the Binding Site for Blocking Substances.- V. Conclusions.- References.- 7. Muscarinic Transmission.- I. Introduction.- II. Nature of the Slow Excitatory Postsynaptic Potential.- A. Conductance Change during the Slow Excitatory Postsynaptic Potential.- B. Effect of the Membrane Potential.- C. Ionic Environment and the Slow Excitatory Postsynaptic Potential.- III. Ionic Mechanism of the Slow Excitatory Postsynaptic Potential.- A. GK Inactivation Hypothesis.- B. Combined Mechanism of the GK Inactivation and the GNa and Gca Activations.- IV. Some Characteristic Features of the Slow Excitatory Postsynaptic Potential.- A. Time-Course and Synaptic Delay of the Slow Excitatory Postsynaptic Potential.- B. Characteristics of Conductance Change.- C. Role of Metabolism of Postganglionic Neurons.- V. Conclusions and Comment.- References.- 8. Peptidergic Transmission.- I. Noncholinergic Excitatory Synaptic Transmission in Sympathetic Ganglia.- II. Involvement of Peptides in Excitatory Synaptic Transmission in Sympathetic Ganglia.- A. Peptide Candidates for a Neurotransmitter Role in the Ganglia.- B. Electrophysiological Characteristics of Noncholinergic Excitatory Postsynaptic Potentials and Peptide-Induced Depolarization.- III. Modulation of Noncholinergic Excitatory Transmission and Peptide-Induced Excitation by Catecholamines and Cyclic Nucleotides.- IV. Summary.- References.- 9. Inhibitory Transmission: Slow Inhibitory Postsynaptic Potential.- I. Introduction.- II. Recording of the Slow Inhibitory Postsynaptic Potential.- III. Synaptic Mediation of the Slow Inhibitory Postsynaptic Potential.- A. Disynaptic Mediation.- B. Monosynaptic Mediation.- IV. Unusual Slow Inhibitory Postsynaptic Potentials and Related Responses.- A. Unusual Acetylcholine Responses.- B. Synaptically Induced K+-Activated Hyperpolarization.- V. Nature of the Slow Inhibitory Postsynaptic Potential.- A. Effect of Ouabain.- B. Effect of K+.- C. Membrane Conductance Changes.- D. Effects of the Membrane Potential Level on the Slow Inhibitory Postsynaptic Potential.- E. Ionic Mechanism of the Slow Inhibitory Postsynaptic Potential.- VI. Second Messengers.- VII. Conclusions.- References.- 10. Presynaptic Modulation: The Mechanism and Regulation of Transmitter Liberation in Sympathetic Ganglia.- I. Introduction.- II. Synthesis, Storage, and Turnover of Acetylcholine.- III. Quantal Release of Acetylcholine.- A. Spontaneous Release.- B. Evoked Release.- C. Regulation of Transmitter Liberation.- IV. Conclusions.- References.- 11. Presynaptic Modulation: Endogenous Substances with Ganglionic Depressant Actions.- I. Presynaptic Modulation.- II. Endogenous Substances with Presynaptic Depressant Actions.- A. Catecholamines.- B. Acetylcholine.- C. ?-Aminobutyric Acid.- D. Prostaglandin E1.- E. Enkephalins.- F. Serotonin (5-Hydroxytryptamine).- G. Histamine.- III. Conclusions.- References.- 12. Postsynaptic Modulation.- I. Introduction.- II. Modulation of the Resting Potential.- A. Catecholamines.- B. 5-Hydroxytryptamine.- C. Adenosine Triphosphate.- D. ?-Aminobutyric Acid.- III. Modulation of the Action Potential.- A. Acetylcholine.- B. Epinephrine.- C. Adenosine Triphosphate.- D. Polypeptides.- IV. Modulation of Receptor Sensitivity.- A. Catecholamines.- B. 5-Hydroxytryptamine.- C. Histamine.- D. Polypeptides.- E. Adenosine Triphosphate.- F. Cyclic Adenosine 3?,5?-Monophosphate.- V. Conclusions.- References.- 13. Pharmacology of Synaptic Ganglionic Transmission and Second Messengers.- I. Introduction.- II. Pharmacological Effects of Compounds That Are Present in the Ganglion.- A. ?-Aminobutyric Acid.- B. Serotonin (5-Hydroxytryptamine).- C. Histamine.- D. Peptides.- III. Small Intensely Fluorescent Cells and Ganglionic Transmission.- A. Location and Morphology.- B. Catecholamines and Cyclic Nucleotides, Small Intensely Fluorescent Cells, and Ganglionic Transmission.- C. Phosphatidate Metabolism.- IV. Effects of Anticholinesterases on the Ganglia.- V. Ganglionic Stimulating and Blocking Agents.- VI. Muscarinic Drugs.- VII. Toxins.- VIII. General Anesthetics and Barbiturates.- IX. Comments and Conclusions.- References.- III. Parasympathetic and Enteric Ganglia and Their Neuropharmacology.- 14. Excitatory Transmission in Parasympathetic Ganglia.- I. Introduction.- II. Extracellular Studies.- III. Intracellular Studies.- IV. Types of Excitatory Transmission in Parasympathetic Ganglia.- A. Excitatory Nicotinic Cholinergic Transmission.- B. Electrical Transmission.- C. Slow Excitatory Muscarinic Transmission.- V. Spontaneous Firing.- VI. Facilitation of Transmission.- VII. Conclusions.- References.- 15. Inhibition in Parasympathetic Ganglia.- I. Introduction.- II. Extracellular Studies.- A. In Vivo Investigations.- B. In Vitro Investigations.- III. Intracellular Studies.- A. Presynaptic Inhibition.- B. Postsynaptic Inhibition.- IV. Conclusions.- References.- 16. Transmission in Enteric Ganglia.- I. Introduction.- II. Electrophysiological Classifications of Neurons.- A. Extracellular Recording.- B. Intracellular Recording.- III. Myenteric Plexus Neurons.- A. Electrical Properties.- B. Fast Excitatory Postsynaptic Potentials.- C. Slow Excitatory Postsynaptic Potentials.- D. Slow Hyperpolarizing Inhibitory Postsynaptic Potentials.- E. Slow Depolarizing Inhibitory Postsynaptic Potentials.- F. Biphasic Synaptic Potentials.- G. Spontaneous Activity.- IV. Submucous Plexus Neurons.- V. Interconnections among Enteric Neurons in Relation to Movements of the Gut.- A. Ascending Excitation.- B. Descending Inhibition.- C. Descending Excitation.- D. Circumferential Excitation and Inhibition.- VI. Conclusions.- References.- IV. Spinal and Reflex Activities of the Ganglia.- 17. The Pharmacology of Sympathetic Preganglionic Neurons.- I. Introduction.- II. Approaches.- III. Pharmacology.- A. Serotonin.- B. Norepinephrine.- C. Acetylcholine.- D. Amino Acids.- IV. Conclusions.- References.- 18. Spontaneous and Reflex Activities: General Characteristics.- I. General Characteristics.- A. Origins.- B. Preganglionic Neurons.- C. Efferent Neurons of Autonomic Ganglia.- D. Afferent Neurons of Autonomic Ganglia.- II. Neuronal and Chemical Mechanisms of Natural Activity.- III. Conclusions.- References.- 19. Chemosensitivity of Visceral Primary Afferent Neurons: Nodose Ganglia.- I. Introduction.- A. Electrical Properties of Nodose Ganglion Cells.- II. Chemosensitivity of Nodose Ganglion Cells.- A. 5-Hydroxytryptamine.- B. Acetylcholine.- C. Bradykinin.- D. Histamine.- E. ?-Aminobutyric Acid.- F. Endogenous Opiatelike Substances.- G. Other Substances.- III. Interactions between Algesic and Analgesic Substances and Their Mechanisms.- IV. Summary.- References.- V. Clinical and CNS-Related Aspects of Ganglionic Transmission.- 20. Autonomic Disease and Clinical Applications of Ganglionic Agents.- I. Introduction.- II. Autonomic Disease.- A. Introduction.- B. Familial Dysautonomia.- C. Congenital Megacolon (Hirschsprung's Disease).- D. Ocular Disorders.- E. Metabolic, Idiopathic, and Postinfectious, Long-Course Neuropathies.- F. Acute Autonomic Neuropathy.- G. Old-Age Dysautonomia.- H. Drug-Induced Autonomic Neuropathies.- I. Hypertension.- III. Mental Disease and the Autonomic Nervous System.- IV. Clinical Use of Ganglionic Drugs.- A. General and Past Uses of Ganglionic Drugs.- B. Use of Ganglionic Blockers in Essential or Chronic Hypertension.- V. Conclusions.- References.- 21. Ganglionic Transmission as a Model for CNS Function.- I. Introduction.- II. Muscarinic (Slow) and Nicotinic (Fast) Excitatory Potentials.- III. Inhibitory Response.- IV. Ganglionic Responses to Transmitters Other than Acetylcholine and Their Interactions.- A. Responses to Noncholinergic Neurotransmitters.- B. Neurotransmitter Interactions.- C. A Special Instance of Interactions: Rat Pelvic Ganglia.- V. Speculations on Special Relevance of Autonomic Ganglionic Phenomena to Higher CNS Function.- VI. Conclusions.- References.

「Nielsen BookData」 より

詳細情報

ページトップへ