Abstract measurement theory
著者
書誌事項
Abstract measurement theory
MIT Press, c1985
大学図書館所蔵 全29件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. [327]-329
Includes index
内容説明・目次
内容説明
The need for quantitative measurement represents a unifying bond that links all the physical, biological, and social sciences. Measurements of such disparate phenomena as subatomic masses, uncertainty, information, and human values share common features whose explication is central to the achievement of foundational work in any particular mathematical science as well as for the development of a coherent philosophy of science. This book presents a theory of measurement, one that is "abstract" in that it is concerned with highly general axiomatizations of empirical and qualitative settings and how these can be represented quantitatively. It was inspired by, and represents a generalization and extension of, the last major research work in this field, "Foundations of Measurement Vol. I," by Krantz, Luce, Suppes, and Tversky published in 1971."Abstract Measurement Theory" presents an overview of the subject with a high degree of generality; it explores several new directions of development; and it introduces a number of significant recent results. One of its major new directions is the extension of measurement to non-Archimedean situations through the use of nonstandard analysis.Among the other topics discussed are the classification and axiomatization of the possible scale types that can occur in science, the theory of numerical representations for ordered relational structures, the generalization of extensive measurement to situations where concatenation operations need be neither associative nor commutative, and the measurement of "conjoint" ordered situations-ones that can be factored into separate, ordered components. Throughout the book, emphasis is placed on attaining a deeper and more exact understanding of the role of axiomatization in the theory of measurement.Louis Narens is Professor of Mathematical Social Science at the University of California, Irvine.
「Nielsen BookData」 より