Partial differential equations and related topics : Ford Foundation sponsored program at Tulane University, January to May, 1974
Author(s)
Bibliographic Information
Partial differential equations and related topics : Ford Foundation sponsored program at Tulane University, January to May, 1974
(Lecture notes in mathematics, 446)
Springer-Verlag, 1975
- : gw
- : us
Available at 83 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographies
Description and Table of Contents
Table of Contents
List of participants.- Preface.- Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation.- A new method in the study of subsonic flows.- Interpolation classes for monotone operators.- Singular nonlinear integral equations of Hammerstein type.- The lefschetz fixed point theorem and asymptotic fixed point theorems.- L p decay rates, p bit (??), and energy decay in nonbicharacteristic cones for first order hyperbolic systems.- The dirichlet problem for nonlinear elliptic equations: A hilbert space approach.- Exact controllability of linear systems in infinite dimensional spaces.- On the statistical study of the Navier-Stokes equations.- Asymptotic behavior of solutions to the quasilinear wave equation.- Inverse problems for nonlinear random systems.- The method of transmutations.- Stochastic solutions of hyperbolic equations.- Remarks on some new nonlinear boundary value problems.- Semilinear wave equations.- Lecture #1. Five problems: An introduction to the qualitative theory of partial differential equations.- Lecture #2. The mathematical theory of crushed ice.- Lecture #3. Scattering by many tiny obstacles.
by "Nielsen BookData"