A programming approach to computability
著者
書誌事項
A programming approach to computability
(Texts and monographs in computer science, . The AKM series in theoretical computer science)
Springer-Verlag, c1982
大学図書館所蔵 全42件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 235-237
Includes indexes
内容説明・目次
内容説明
Computability theory is at the heart of theoretical computer science. Yet, ironically, many of its basic results were discovered by mathematical logicians prior to the development of the first stored-program computer. As a result, many texts on computability theory strike today's computer science students as far removed from their concerns. To remedy this, we base our approach to computability on the language of while-programs, a lean subset of PASCAL, and postpone consideration of such classic models as Turing machines, string-rewriting systems, and p. -recursive functions till the final chapter. Moreover, we balance the presentation of un solvability results such as the unsolvability of the Halting Problem with a presentation of the positive results of modern programming methodology, including the use of proof rules, and the denotational semantics of programs. Computer science seeks to provide a scientific basis for the study of information processing, the solution of problems by algorithms, and the design and programming of computers.
The last 40 years have seen increasing sophistication in the science, in the microelectronics which has made machines of staggering complexity economically feasible, in the advances in programming methodology which allow immense programs to be designed with increasing speed and reduced error, and in the develop- ment of mathematical techniques to allow the rigorous specification of program, process, and machine.
目次
1 Introduction.- 1.1 Partial Functions and Algorithms.- 1.2 An Invitation to Computability Theory.- 1.3 Diagonalization and the Halting Problem.- 2 The Syntax and Semantics of while-Programs.- 2.1 The Language of while-Programs.- 2.2 Macro Statements.- 2.3 The Computable Functions.- 3 Enumeration and Universality of the Computable Functions.- 3.1 The Effective Enumeration of while-Programs.- 3.2 Universal Functions and Interpreters.- 3.3 String-Processing Functions.- 3.4 Pairing Functions.- 4 Techniques of Elementary Computability Theory.- 4.1 Algorithmic Specifications.- 4.2 The s-m-n Theorem.- 4.3 Undecidable Problems.- 5 Program Methodology.- 5.1 An Invitation to Denotational Semantics.- 5.2 Recursive Programs 110 5.3* Proof Rules for Program Properties.- 6 The Recursion Theorem and Properties of Enumerations.- 6.1 The Recursion Theorem.- 6.2 Model-Independent Properties of Enumerations.- 7 Computable Properties of Sets (Part 1).- 7.1 Recursive and Recursively Enumerable Sets.- 7.2 Indexing the Recursively Enumerable Sets.- 7.3 Godel's Incompleteness Theorem.- 8 Computable Properties of Sets (Part 2).- 8.1 Rice's Theorem and Related Results.- 8.2 A Classification of Sets.- 9 Alternative Approaches to Computability.- 9.1 The Turing Characterization.- 9.2 The Kleene Characterization.- 9.3 Symbol-Manipulation Systems and Formal Languages.- References.- Notation Index.- Author Index.
「Nielsen BookData」 より